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Zusammenfassung
Nach dem Standardmodell sind W -Bosonenpaare, die bei Higgs-Zerfällen entstehen, mit-
einander verschränkt. Diese Eigenschaft wurde noch nicht experimentell getestet. Um die
Quantenverschränkung in W -Bosonenpaaren zu messen, ist es sinnvoll, die Hypothese
eines separablen Zustands auszuschließen. Die Standardmodell-Hypothese wird in dieser
Arbeit als Pseudodaten behandelt. Da Elektronen und Myonen präzise gemessen werden
können, wird der dileptonische Zerfallskanal mit einem Elektron und einem Myon im
Endzustand verwendet. Für eine Analyse von Quantenverschränkungen müssen sensitive
Variablen mit einem deutlichen Unterschied in separablen und verschränkten Zuständen
gefunden werden. Die in dieser Arbeit untersuchten Observablen sind mll, ϕll und ηll.
Für die Signal- und Untergrundtrennung wird ein dichtes neuronales Netzwerk verwen-
det. Um die Hypothesen zu vergleichen, wird eine Profil Likelihood Entfaltung und ein
χ2 Hypothesentest durchgeführt.

Die empfindlichste Observable ist mll. Unter der Verwendung von nur statistischen
Unsicherheiten (einschließlich systematischer Unsicherheiten) kann die Hypothese eines
separierbaren Zustands mit 6σ (4, 3σ) ausgeschlossen werden. Die Observable ϕll ist weni-
ger empfindlich gegenüber Quantenverschränkung mit Ausschlussgrenzen von 5, 7σ (3, 7σ)
für den separablen Zustand unter der Verwendung von nur statistischen Unsicherheiten
(einschließlich systematischer Unsicherheiten). Die am wenigsten empfindliche untersuchte
Observable ist ηll. Die Ausschlussgrenze für einen separablen Zustand in dieser Observable
beträgt weniger als 1σ.

Abstract
According to the Standard Model, W boson pairs produced in Higgs decays are entangled.
This property has not yet been probed experimentally. To probe quantum entanglement
in W boson pairs, it is suitable to first exclude the hypothesis of a separable state. The
Standard Model hypothesis is treated as pseudo data in this thesis. Since electrons and
muons can be measured precisely the dileptonic decay channel with one electron and one
muon in the final state is used. To investigate quantum entanglement, sensitive variables
with a clear difference between the separable and entangled state must be known. The
studied observables are mll, ϕll and ηll. For the signal and background separation, a
dense neural network is used. To compare the two hypotheses, a binned profile likelihood
unfolding and a χ2 hypothesis test is performed.

The most sensitive observable is mll. It provides exclusion limits for the hypothesis of
a separable state of 6σ (4.3σ) using only statistical uncertainties (including systematic
uncertainties). The observable, ϕll, is less sensitive to quantum entanglement with 5.7σ
(3.7σ) exclusion limits for the separable state using only statistical uncertainties (including
systematic uncertainties). The least sensitive studied observable is ηll. The exclusion limit
for a separable state using this observable is less than 1σ.
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1. Introduction

Entangled particles cannot be described independently of each other. From a classical
point of view, this is an unintuitive behaviour. This is why Einstein, Podolsky and
Rosen argued in 1935 that quantum mechanics must be incomplete [1]. According to
them, entanglement violates the principle of locality. As a solution, deterministic hidden
variables were proposed. In 1964 John Bell showed theoretically, through Bell’s inequality,
that quantum entanglement allows stronger correlations than possible with the theory of
hidden variables [2, 3]. Since then, entanglement has been confirmed as a property of
quantum mechanical systems in many experiments [4–7] establishing a crucial difference
between quantum mechanics and classical physics. Previously, these experiments were
focused on low-energy scales. However, in recent years, entanglement at the highest
energy scales at the Lhc has become a popular research topic. One of the highlights of
this research was the observation of entanglement in top quark pairs at the Lhc by the
Atlas and by the Cms collaboration [8, 9]. These measurements confirm entanglement as
a quantum mechanical property of top quarks at a high energy scale. Despite this progress,
further tests of quantum entanglement in different particles and at various energy scales
are necessary to test the rules of quantum mechanics and the Standard Model of particle
physics.

This work focuses on the entanglement of W ± boson pairs, produced in decays of on-
shell Higgs bosons. The aim is to study sensitivity to quantum entanglement in the
dileptonic decay channel in the Atlas run 2 data. The first part of the thesis introduces
the Standard model of particle physics and the experimental setup with a focus on the
Atlas detector. After that, the H → WW ∗ process and especially quantum entanglement
the H → WW ∗ → ℓνℓν final state are explained. Chapter 5 describes and shows the
results of the event simulation. In addition, the object definitions used and event selection
are defined and evaluated in Chapter 6. The following chapter then presents the analysis
strategy and the methods used in this thesis. In Chapter 8, the research results are
presented. Finally, the results are summarized and an outlook for further analyses is
given.
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2. The Standard Model of Particle
Physics

The Standard Model of particle physics (SM) is a theory that describes the known ele-
mentary particles and their interaction through three of the four fundamental forces. This
includes the electromagnetic, the weak and the strong interaction, but not gravity. The
SM further contains the Higgs mechanism, which explains the masses of the elementary
particles [10–16]. The SM is a renormalisable, relativistic quantum field theory. It has
a U(1)Y × SU(2)L × SU(3)C gauge symmetry [10–14] and predicts the behaviour of the
elementary particles with great precision on various energy scales [17]. But it is not a
complete theory. It does not explain several observed phenomena like dark matter and
gravitation [18].

2.1. The Elementary Particles

The elementary particles of the SM are shown in Figure 2.1. The spin S divides the
particles into fermions and bosons. Fermions have the spin S = 1/2 and bosons have
an integer spin. In addition to the spin, the electric charge Q in units of the elementary
charge e and the third component of the weak isospin I3 are properties that characterise
the elementary particles.

The SM consists of 12 fermions and their corresponding antiparticles, which have the
same mass but inverted quantum numbers. For example, the antiparticles have a reversed
sign of the charge. The fermions are separated into 6 leptons and 6 quarks and are
organised into 3 generations of matter. Each generation consists of two leptons and
two quarks. The left-handed fermions of each generation are grouped into weak isospin
doublets with I3 = ±1/2. Each right-handed fermion forms a weak isospin singlet with
I3 = 0. For the quarks, each doublet consists of an up-type quark with I3 = 1/2 and an
electric charge of Q = 2/3. The second quark in the doublet is the down-type quark with
I3 = −1/2 and Q = −1/3. The lepton isospin doublet consists of a charged particle with
I3 = −1/2 and Q = −1 and a neutrino with I3 = 1/2 and Q = 0. The charged leptons
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2. The Standard Model of Particle Physics

Figure 2.1.: An overview of the elementary particles of the SM.

and the quarks have a mass, while the neutrinos are massless in the SM. Even though it
is experimentally known that at least one neutrino has a mass since neutrino oscillation
was observed [19, 20]. In each generation, the masses of the particles increases [17].

The five gauge bosons are the mediators of the fundamental forces. They are vector
bosons with a spin S = 1. The photon mediates the electromagnetic force, the gluons the
strong force and the Z0 and W ± bosons the weak force. Furthermore, there is the scalar
Higgs boson with S = 0 [17].

2.2. The Interactions

The strong interaction is described by the theory of quantum chromodynamics (QCD)
which has an SU(3)C symmetry group. The eight gluons mediate the strong force. The
gluons couple to colour-charged particles as referred to by the C in SU(3)C [11, 12]. All
gluons are massless and carry no electric charge and no isospin. There are three different
colour charges, blue, green and red. In addition, there are the corresponding anticolours
for the antimatter particles. Colour is only carried by the quarks and by the gluons.
Each gluon carries a colour and an anticolour. In addition, gluons themselfs interact
because SU(3)C is non-Abelian [11, 12]. A fundamental property of the strong force is
confinement, which states that colour-charged particles always appear in colour-neutral
bound states. These bound states are mesons consisting of a quark and an antiquark as
well as baryons and antibaryons consisting of three quarks or three antiquarks. When
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2.2. The Interactions

quarks are separated, a new quark-antiquark pair is created, which creates new bound
states [21]. The coupling constant αs depends on the energy. It decreases with increasing
energy. This behaviour of the strong force is called asymptotic freedom [22].

The electroweak force is the unification of the electromagnetic and the weak force. This
electroweak force is described by a U(1)Y ×SU(2)L symmetry. Quantum electrodynamics
(QED) describes the electromagnetic force. It has a U(1)Y gauge symmetry. The Y stands
for the weak hypercharge Y = 2(Q − I3). It has one gauge boson, the massless photon.
The photon couples to the electric charge and the photon itself is electrically neutral.
Thus, there is no self-interaction. The photon is colourless and has I3 = 0 [17, 23–25].

The weak force is described by the quantum flavour dynamic (QFD). It has a SU(2)L

gauge symmetry. Since SU(2)L has 3 generators, three gauge bosons mediate the weak
force. These are the massive Z0 and W ± bosons [17]. In the following, Z boson and W

boson are written for the gauge bosons. The correct charges are implied. The W bosons
have a weak isospin of I3 = ±1 and an electric charge of Q = ±1. It mediates the charged
weak currents and couples only to left-handed particles and right-handed antiparticles as
emphasized by the L in the symmetry group. The vertex factor of the weak interaction
for leptons and W bosons [13, 14],

i
gW√

2
γµ 1 − γ5

2 , (2.1)

describes this. Where γµ are the gamma-matrices and gW is the coupling strength. The
operator 1−γ5

2 projects a particle on the left-handed part of its state. It is called the
left-handed chirality projector. The interaction of a W boson with a quark allows flavour
changes between the three generations. The Cabibbo-Kobayashi-Maskawa-matrix (CKM-
matrix) elements Vij [26] accounts for the transition of an up-type quark of the flavour
i to a down-type quark of the flavour j. The vertex factor for quarks interacting with
a W boson is the same as the vertex factor of the lepton interaction in Equation (2.1)
multiplied with the CKM-matrix element Vij [26]. The Z boson is electrically neutral
and has a weak isospin of I3 = 0. It mediates the neutral weak current. In contrast to
the W boson, the Z boson cannot mix the flavour of the quarks. Further, it can couple
to charged right-handed particles, although it couples to them differently than to the
left-handed particles [10].

The masses of the gauge bosons Z and W violate the gauge invariance of the SM.
As a solution, the Higgs field and the Higgs boson are introduced through the process
of electroweak symmetry breaking [15, 16]. The Atlas and Cms collaborations at the
Lhc discovered the Higgs boson in 2012 [27, 28]. It is an electrically neutral, massive
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2. The Standard Model of Particle Physics

Table 2.1.: Cross-section of the most important production modes of the Higgs boson
at pp collisions at the Lhc at

√
s = 13 TeV [17].

Process ggf VBF tt̄H WH ZH

Cross-section [pb] 48.6+5.6 %
−7.4 % 3.78+2.1 %

−2.1 % 0.50+6.6 %
−7.4 % 1.37+2.0 %

−2.0 % 0.88+4.1 %
−3.5 %

and colourless scalar boson with I3 = −1
2 , which couples to the masses of the elementary

particles [17]. Since the Higgs boson is massive, it also couples to itself. The Yukawa
coupling of the Higgs field to the fermions explains the masses of the fermions [10, 29].

2.3. Higgs Production at the LHC Run 2

The most dominating production mode of the Higgs boson at a pp collider at
√

s = 13 TeV
is the gluon-gluon-fusion (ggf) [17]. In this process, two gluons initiate a virtual loop of
quarks in which the Higgs boson is produced. Since the top quark is the heaviest quark
and couples the strongest to the Higgs boson, this production mechanism is dominated by
loops with top quarks. Other production modes at the Lhc are the vector-boson-fusion
(VBF). In this mode, two Z bosons or two W bosons with opposite charges are emitted
by two quarks and fuse together to form a Higgs boson. A Higgs boson can also be
produced in association with a top anti-top pair (tt̄H). A W or Z boson, which emerges
in a quark anti-quark annihilation, can radiate a Higgs boson. This process is called Higgs
Strahlung. The cross-sections are listed in Table 2.1.

2.4. Quantum Entanglement of a two-Particle State

A state of a quantum system of multiple particles is described in the tensor product of
the one-particle Hilbert spaces. A state on this product Hilbert space is called entangled
if it is not separable. In this case, it is not possible to describe the particles independently
of each other. The density matrix is often used to describe a many-particle state and
entanglement. A density matrix ρ on a two-particle Hilbert space H = HA ⊗HB describes
a separable state if it can be written as,

ρ =
∑

i

miρA,i ⊗ ρB,i.

Where the mi are coefficients and the ρA,i and ρB,i are density matrices on the one-particle
Hilbert spaces HA and HB.
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3. Experimental Setup

High energetic particle collisions are required to measure processes involving a Higgs
boson. These particle collisions are provided by the large hadron collider and recorded
by the Atlas detector. Both experiments are located at Cern near Geneva.

3.1. The Large Hadron Collider

The Large Hadron Collider (Lhc) is a synchrotron with a circumference of approximately
27 km. The accelerator is primarily used for symmetric proton-proton collisions, but it is
also used for lead-lead collisions.

The particles are first accelerated in several smaller linear or circular accelerators before
they are injected into the Lhc. The accelerated proton beams are divided into bunches
of protons. These bunches collide in one of the four detectors at the Lhc. A collision of
the proton beam happens every 25 ns [30]. The second run of the Lhc had a centre of
mass energy of

√
s = 13 TeV [30].

3.2. The ATLAS Detector

The Atlas detector is a multipurpose detector at the Lhc. It has a cylindrical shape and
an end cap on each detector side to close the cylinder. The height of the detector is 25 m
and the width is 44 m. The detector can roughly be divided into the tracking detector,
the calorimeters, the magnets and the muon spectrometers [31]. At the second run of the
Lhc the Atlas detector had an integrated Luminosity of Lint = 140.1(12) fb−1 [30].

The origin of the coordinate system of Atlas is the interaction point of the collision.
The z-axis is oriented along the beamline, the x-axis is directed to the centre of the Lhc
and the y-axis points upwards.

The xy-plane is orthogonal to the beam pipe. The transverse momentum is therefore
defined as,

pT =
√

p2
x + p2

y,
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3. Experimental Setup

Figure 3.1.: A computer generated picture of the Atlas detector. The different layers
are labelled. ©Cern

the momentum orthogonal to the beam pipe. Here px and py are the momentum in the x

and y direction. The colliding protons at the Lhc do not have any transverse momentum.
The total transversal momentum after the collision is zero since momentum is conserved.
The measured transversal momentum can be non-zero for an event. This is the case if
particles are not measured by the detector. The negative of the total measured transverse
momentum is defined as the missing transverse momentum. At high energies, the missing
transverse momentum is also called the missing transverse energy.

Instead of Euclidean coordinates, polar coordinates can be used. In these coordinates
ϕ is the azimuthal angle and θ is the polar angle in the xy-plane. Instead of the polar
angle, often the pseudorapidity,

η = − ln
(

tan
(

θ

2

))
,

is used. The pseudorapidity is the relativistic limit of the rapidity,

y = 1
2 ln

(
E + pz

E − pz

)
,

when the mass is negligible compared to the energy E ≫ m. Here pz is the momentum
in the z direction. Differences in the pseudorapidity ∆η and rapidity ∆y are Lorentz
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3.2. The ATLAS Detector

invariant under Lorentz transformations along the z axis.
The Atlas detector consists of individual subdetectors. These subdetectors are ar-

ranged in cylindrical layers, shown in Figure 3.1. Each subdetector fulfils special tasks.
The inner part of the Atlas detector, the vertex and tracking detector, is positioned

directly around the beam pipe. It consists of a pixel detector, a semiconductor detector
and a transition radiation tracker [31]. The tracking detector measures the trajectories
of charged particles, such as electrons and muons. The Inner Detector is embedded in
a solenoid magnet [31], which produces a magnetic field inside the tracking detector.
This magnetic field bends the trajectories of the electrically charged particles inside the
detector for momentum measurements.

The next layer are the calorimeters, which measure the energy of the particles. The
calorimeter is divided into an electromagnetic and a hadronic calorimeter. The elec-
tromagnetic calorimeter measures the energy of electrons and photons through electro-
magnetic interactions such as bremsstrahlung and pair production. Atlas uses a liquid
Argon calorimeter with lead as the passive medium [31]. Since the masses of muons and
charged hadrons are large compared to the electron mass, they lose less energy through
bremsstrahlung. Therefore, they do not shower in the electromagnetic calorimeter. Elec-
trically neutral particles, except the photon, do not interact with the electromagnetic
calorimeter. Using a trace in the tracking detector and a particle shower in the electro-
magnetic calorimeter electrons can be identified.

The hadronic calorimeter further out measures the energy and position of hadrons
through the strong interaction. It consists of a Tile Calorimeter around the beam pipe
with plastic scintillators as the active medium and steel as the passive medium [31]. A
liquid Argon calorimeter is used at the end caps.

The outermost part of the detector is the muon spectrometer. There are additional
toroid magnets between the muon chamber and the hadronic calorimeter [31]. The mag-
netic field is used in the muon spectrometers to determine the momentum of muons. The
magnetic field turns the muons in a different direction as in the Inner Detector. With
the information about the tracks in the Inner Detector and the muon spectrometer, the
momentum and energy of the muon are precisely reconstructed. The muon identification
through the spectrometer is accurate because most other particles stop in the calorimeters
[31].

The neutrinos do not interact with the detector at all. Therefore, they cannot be
identified directly. They are reconstructed, via the missing transverse momentum.

The collision rate at the Lhc is 40 MHz [30]. The high data rate that is processed is
too large for all events to be stored. To filter the data for interesting events which are
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3. Experimental Setup

eventually saved a two-level trigger system is used in Atlas. The rate of events which
pass the trigger is approximately 1 kHZ. The Level-1 trigger is hardware based and it
makes its decision in less than 2.5 µs. It takes information from the calorimeters and
the muon chamber and retains high energetic events. The software-based Level-2 trigger
makes more complex decisions. In addition to the information from the calorimeters and
the muon chambers, information from the Inner Detector is used. The decision time is
under 200 µs [31].
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4. The H → W W ∗ → ℓνℓν Process

The Higgs boson is an unstable particle with a lifetime of approximately τH = 2 × 10−22 s
[17] and a measured mass of mH = (125.25 ± 0.17) GeV [17]. One of the decay modes
of the Higgs bosons is the decay in two W bosons. The W has a measured mass of
mW = (80.0377 ± 0.00012) GeV [17]. Therefore, the mass of two W bosons is larger than
the mass of one Higgs boson. As a result, one of the W bosons has to be an off-shell
virtual particle. The W boson has a lifetime of approximately τW = 3 × 10−25 s [17].
Thus, the W bosons decay before they are detected directly. The decay products are
therefore used to analyse the WW ∗ state. It can decay leptonically into a charged lepton
and the corresponding neutrino from the same isospin doublet. The τ leptons decay
further, for example into electrons or muons and two neutrinos, before they are measured
in the detector. τ leptons are therefore experimentally challenging. Hence, only electrons
and muons are treated as signal in this analysis. Due to their leptonic decay, τ decays are
a background to the electrons and muons. The resulting neutrino cannot be measured
directly in the detector. The kinematic properties of the charged leptons µ± and e± as
energy and momentum can, however, be precisely measured in the detector as described
in Section 3.2. The decay of the W bosons into quarks is not used since the hadronic
background is large in hadron colliders.

4.1. Entanglement in H → W W ∗ → ℓνℓν

The following section is based on references [32, 33]. The Higgs boson is a spin-0 particle
and it decays into two spin-1 particles. Due to angular momentum conservation, both W

bosons have the same polarisation state. Consequently, both W bosons are either left-
handed, right-handed or longitudinally polarised. Hereinafter W1 is the on-shell and W2

is the off-shell W boson. Let (xH , yH , zH) be the coordinate system of the Higgs bosons
rest frame. Choose the zH axis such that it points in the direction of the momentum of
the W2 boson. The yH-axis is chosen such that the momentum of the incoming protons
and the momentum of the W bosons lies in the yHzH-plane. The xH-axis is defined as
xH = yH × zH . Furthermore let (xi, yi, zi) be the coordinate system of the rest frame
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4. The H → WW ∗ → ℓνℓν Process

W1 rest-frame

W2 rest-frame

H rest-frame

p p

xH

zH yH

HH

l2

ν2

θ′
1

x1

z1
y1 l1

H

ν1

x2

z2

y2

HW2

W1

z2

x1
z1y1

xH

yH
ϕ′

1y2

x2

zH

Figure 4.1.: Coordinate System used in the analysis. The parts in the blue and red
circles are the rest-frames of the W bosons. Outside the circle is the rest-
frame of the Higgs boson. The angles are only shown for the lepton l1.

of the Wi boson. Denote with x̂, ŷ and ẑ the unit vector in the direction of the x-axis,
y-axis and z-axis. Then the axes of the rest frame of the W1 are defined by x̂1 = −x̂H ,
ŷ1 = −ŷH and ẑ1 = −ẑH . The axes of the rest frame of the W2 are defined by x̂2 = −x̂H ,
ŷ2 = ŷH and ẑ2 = ẑH . The coordinate systems are shown in Figure 4.1.

The spin density matrix of the two W bosons can be determined as [32, 33]

ρ =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1

6(
√

2A1
2,0 + 2) 0 1

3C2,1,2,−1 0 1
3C2,2,2,−2 0 0

0 0 0 0 0 0 0 0 0
0 0 1

3C2,1,2,−1 0 1
3(1 −

√
2A1

2,0) 0 1
3C2,1,2,−1 0 0

0 0 0 0 0 0 0 0 0
0 0 1

3C2,2,2,−2 0 1
3C2,1,2,−1 0 1

6(
√

2A1
2,0 + 2) 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



.

The CL1,M1,L2,M2 and Ai
Li,Mi

are constant depending on the polarisation state of the Wi

bosons with Li = 1, 2 and −Li ≤ Mi ≤ Li. The helicity state of the W bosons can
be written in terms of the coefficients a−1−1, a11 and a00. Here a−1−1 decribes the left-
handed helicity state, a11 the right-handed helicity state and a00 the longitudinal helicity
state. Assuming CP is conserved and performing a calculation at leading order, only the
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4.1. Entanglement in H → WW ∗ → ℓνℓν

following coefficients [32, 33],

A1
2,0 = A2

2,0 = 1√
2N

(|a11|2 + |a−1−1|2 − 2|a00|2),

C2,2,2,−2 = C∗
2,−2,2,2 = 3

N
a11a

∗
−1−1,

C2,1,2,−1 = −C1,1,1,−1 = −C∗
1,−1,1,1 = C∗

2,−1,2,1 = 3
2N

(a11a
∗
00 + a00a

∗
−1−1),

C1,0,1,0 = −3
2N

(|a11|2 + |a−1−1|2),

C2,0,2,0 = 1
2N

(|a11|2 + |a−1−1|2 + 4|a00|2),

are non-zero. Here N = (|a11|2 + |a−1−1|2 + |a00|2) is a normalisation factor. Additionally,
B1 = ±

√
2π and B2 =

√
2π
5 are defined. The upper sign is for the case that W1 = W +

and the lower for the case that W1 = W − . With the spherical harmonics Y M
L the angular

distribution for the density operator ρ is determined as [32, 33]

1
σ

dσ

dΩ1dΩ2
= 1

4π

[
1 + A1

L1M1BL1Y M1
L1 (θ′

1, ϕ′
1) + A2

L2M2BL2Y M2
L2 (θ′

2, ϕ′
2)

+ CL1,M1,L2,M2BL1BL2Y M1
L1 (θ′

1, ϕ′
1)Y M2

L2 (θ′
2, ϕ′

2)
]
,

where summation over indices is implied. The angles θ′
i and ϕ′

i are the polar and azimuthal
angles of the charged lepton in the rest frame of the Wi boson.

In the separable state, all non-diagonal elements vanish in the density matrix. Hence,
C2,1,2,−1 = 0 and C2,2,2−2 = 0. Consequently are a11 = a−1−1 = 0. The only non-vanishing
coefficients in this case are A1

2,0 = A2
2,0 = −

√
2 and C2,0,2,0 = 2. The W bosons are there-

fore exclusively longitudinally polarized. In the separable case, the angular distribution
simplifies to,

1
σ

dσ

dΩ1dΩ2
= 1

16

[
4 − (3 cos2 (θ′

1) − 1) − (3 cos2 (θ′
2) − 1)

+ (3 cos2 (θ′
1) − 1)(3 cos2 (θ′

2) − 1)
]
.

(4.1)

Since the angular distribution for the separable state is independent of ϕi, each value of
ϕi is assumed to be equally likely. The separable hypothesis, that the state only contains
longitudinally polarised W bosons can be compared, to the SM hypothesis that the state
also contains different polarizations.

Since the neutrinos cannot be measured precisely as described in Section 3.1, observables
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4. The H → WW ∗ → ℓνℓν Process

Figure 4.2.: Simulated observables for an entangled and a separable state. The variables
marked with TB are for a Higgs boson boosted with pH

t = 20 GeV. The
solid lines are for the Higgs boson at rest [32]. The top left shows mll, the
top right ϕll and the bottom ηll.

which depend solely on the charged leptons are instead favourable for the analysis. Espe-
cially, the invariant mass mll of the charged leptons, the absolute value of the difference
in azimuthal angle ϕll between the momentum of the charged leptons in the laboratory
frame and the modulus of the difference in the pseudorapidity ηll in the laboratory frame
of the two charged leptons are relevant observables. These observables can be determined
as shown in Figure 4.2. The dashed lines marked with TB are for a Higgs boson with a
transversal momentum of pH

T = 20 GeV in the laboratory frame. The solid lines are for
the Higgs boson at rest. Especially the invariant mass mll and the angle between the
leptons ϕll show a clear difference between the separable and the SM case. Therefore,
these variables are well suited for studying entanglement. The difference in ηll is less
clear. This observable is less likely sensitive to the difference between the non-separable
and separable state.

In this thesis, the experimental sensitivity to quantum entanglement of the 3 observables
mll, ϕll and ηll in the Atlas run 2 data will be studied.
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5. Event Generation

To compare measured data to theory predictions in particle physics simulations of the
studied processes are used. One collision in the detector is called an event. Many events
are simulated to have larger statistics. An event can be simulated at different levels.
These are explained in the following chapter.

5.1. Monte Carlo Event Generators

At first, the parton level is simulated. Parton level events are simulated with Monte Carlo
(MC) generators. MC generators simulate the hard particle scattering in the accelerator.
The parton level is also called truth information because all information of every particle
involved in the hard interaction process is known. The probability for a certain process
is given by SM calculations. For these calculations, a given order of perturbation theory
is used. This level considers no further showering processes and decays after the hard
interaction.

Next is the particle level. Here the effects of the parton shower and other decays are
considered. The parton shower describes the emission of gluons and quarks from the
decay products and the initial proton-proton state. The emerging quarks hadronise and
form bound states such as mesons and baryons. The hadronisation can not be calculated
with perturbation theory. Instead, heuristic models like the Lund-String [34] or clustering
models [35, 36] are used. The hadronisation is simulated in independent shower generators.
The decay products from one initial parton are clustered into jets. Consequently, a particle
level event does not include the initial products of the hard scattering process.

The MC generators used for the different signal and background samples are shown in
Table A.1 in the Appendix.

5.2. Detector Simulations

The detectors used in particle physics are limited in their detection and resolution ca-
pabilities. These are not included in the MC simulations. In the last step of the event
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5. Event Generation

generation, the effects of the detector are simulated, according to the detector used in the
experiment. This level is called the reconstruction (reco) level. The MC data at particle
level is turned into a simulated detector signal. To simulate the Atlas detector Geant4
is used [37].

5.3. Custom Angle Replacement

In the MC sample of the HWWggf process, the polarisations are given by the SM distri-
bution and not by the separable state. With a technique called custom angle replacement
(CAR) the desired polarisation that describes a separable state can be produced [38],
by modifying the angles according to the angular distribution of the separable state in
Equation (4.1). The used coordinate systems are described in Section 4.1.

At first, the four-momenta of the leptons in the final state are calculated in the lab-
oratory frame. After that, a 2-step Lorentz transformation into the rest frame of the
respective Wi boson, via the Higgs rest frame, is performed. In this, the four-momenta
of the leptons are determined again. Then the new cos θ′

i and ϕ′
i variables are randomly

drawn from the angular distribution of the separable state according to Equation (4.1).
Since the distribution is independent of ϕ′

i, the angle is randomly drawn from a uniform
distribution. These are the new polar coordinates of the charged lepton in the Wi boson
rest frame. The direction of the momentum of the charged lepton gets rotated, such that
it points in the new direction (θ′

i,ϕ′
i). The new direction of the momentum of the neutrino

is in the opposite direction of the charged lepton in the W boson rest frame. This does
not change the total energy and the total momentum. In the last step, the leptons are
transformed back into the laboratory frame to determine the new four-momenta. [38]

The CAR algorithm is applied to each event of the truth level SM sample to obtain the
separable state at truth level. The separable events at truth level are therefore the SM
events, with a changed angular distribution of the leptons in the W bosons rest frame.
The events of the separable state are also called CAR events.

5.4. Pseudo-Reconstruction CAR Sample

Currently, there are no CAR samples at reconstruction level because no dedicated theory
samples are available for simulations. However, later in this analysis, a reconstruction
CAR sample is needed. For this, a pseudo-reconstruction CAR sample is produced. This
pseudo-reconstruction CAR sample uses no complete detector simulation since this would
be outside the scope of this bachelor thesis. Despite that, it is still usable in the signal
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5.4. Pseudo-Reconstruction CAR Sample

background classification to reduce the bias towards the SM or the CAR sample. Apart
from the signal background classification, the pseudo-reconstruction CAR sample is not
used in the analysis, due to its incompleteness with respect to a proper detector simulation.
If the CAR sample is shown in a figure it is denoted as such. In graphics HWWggf always
means the SM sample.

The pseudo-reconstruction CAR sample is produced with the truth information of the
CAR and SM sample and the reconstruction SM simulation. The idea is that the momen-
tum changes from truth to reconstruction level are the same for SM and CAR sample.
At first, the leptons at reconstruction and truth level in the SM simulation are matched
by lepton type. If that is not possible they are matched by minimizing in

∆R =
√

(∆ϕ)2 + (∆η)2

where ∆ϕ and ∆η are the difference in the azimuthal angle and the pseudorapidity be-
tween the lepton at truth and at reconstruction level. The 3 momenta of the pseudo-
reconstruction CAR sample pCAR

reco (li) of the ith lepton li is then calculated with the truth
three-momentum of the CAR and SM sample pCAR

truth(li) and pSM
truth(li) and the reconstruc-

tion level three-momentum of the SM sample pSM
reco(li) by

pCAR
reco (li) = pSM

reco(li) + pCAR
truth(li) − pSM

truth(li).

The energy ECAR
reco (li) is then calculated by the four-momentum mass relation with the

mass at the reconstruction level of the ith lepton mSM
reco(li) by

ECAR
reco (li) =

√
(mSM

reco(li))2 + (pCAR
reco (li))2.

Additionally the cuts in lepton acceptance in the pseudorapidity and transverse momen-
tum in the object definition in Section 6.1 of |η| < 2.5 for muons and |η| < 1.32 and
1.52 < |η| < 2.47 for electrons are implemented. The additional jets in the CAR sam-
ple are the same as in the SM simulations. The vector of the missing transverse energy
EMiss, CAR

T, reco is then calculated with the transverse momentum pT of the leptons li and jets
ji as

EMiss, CAR
T, reco = −

 2∑
i=1

pT
CAR
reco (li) +

Njets∑
i=1

pT(ji)
 .

The notation with superscript and subscript variables is as before. Here Njets is the
number of jets in the event. If Njets = 0 the sum for the jets is dropped. The modulus of
the vector is the missing transverse energy EMiss

T and the angle in the transverse plane is
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5. Event Generation
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Figure 5.1.: Separation of the SM reconstruction sample and the pseudo-reconstruction
CAR sample. On the left for mll, in the middle for ϕll and on the right for
ηll.

the angle of the missing transverse energy EMiss
ϕ .

The difference in the distribution of the kinematic variables of the leptons and the miss-
ing transverse energy between the SM events and CAR events are shown in Appendix B.
The distribution of the pseudorapidity of the leptons is centred around zero for both hy-
pothesises. The CAR sample is narrower than the distribution of the SM events. The
difference in ϕ of the leptons is negligible. This is expected since ϕ is uniformly distributed
in the SM hypothesis and the CAR algorithm draws ϕ from a uniform distribution. The
difference in the transverse momentum of the leading lepton between the two hypotheses
is negligible. However, the energy of the leading lepton in the CAR sample is on average
smaller than the SM sample. Furthermore, the transverse momentum and the energy of
the sub-leading lepton are smaller in the CAR sample than in the SM sample. The leptons
in the CAR sample are therefore softer. The missing transverse energy EMiss

T is on average
broader distributed for the CAR events. The shapes of both samples are similar, but the
SM distribution has a higher maximum. The observable EMiss

ϕ is uniformly distributed
as expected. The separation for the observable mll, ϕll and ηll are shown in Figure 5.1.
Especially, mll shows a significant difference between the SM and CAR events. The max-
imum of the pseudo-reconstruction CAR distribution is at a higher value compared to
the SM events. The difference in the shape of the distribution in ϕll is not as large as
in mll. However, the pseudo-reconstruction CAR distribution is more flat than the SM
distribution. They are still significantly different. The difference in ηll is minimal in the
width of the two distributions. It is broader distributed in the CAR sample than in the
reconstruction SM sample.
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6. Object Definition & Event
Selection

Particles are reconstructed from the signal in the detector. For the same particle, different
definitions can be used. The definitions of leptons and jets used in this analysis are
explained in the object definition. After that, in the preselection, cuts in the kinematics
of the events are explained. The sample is also divided into the preselection regions. A
region is a part of the total sample with specific characteristics in the event and object
kinematics. Finally, the categorization into signal and control regions is explained in the
event classification. Both event selection and classification are important to minimize the
number of background events in the signal regions.

6.1. Object Definition

Electrons are reconstructed from their path through the Inner Detector and their energy
decomposition inside the electromagnetic calorimeter. The detector limits the pseudora-
pidity of electrons to |η| < 2.47 [31]. Furthermore, electrons are not detected in the area
between the barrel and the endcap calorimeter, with a pseudorapidity of 1.32 < |η| < 1.52
[31]. Muons are reconstructed via a track in the inner detector where they do not shower.
Therefore, they pass through the calorimeters and are measured in the muon chambers.
Their pseudorapidity needs to be inside the detector range of |η| < 2.5. The electrons
and muons also require a transverse momentum of at least pT > 7 GeV. For the electron
and muon identification a tight likelihood working point is chosen. A tight working point
on the lepton isolation reduces the effect of non-prompt leptons. This also works with a
likelihood-based identification algorithm [39, 40].

Jets are reconstructed from the energy decomposition in the hadronic calorimeter. For
the clustering of the energy decomposition the anti-kt algorithm is used with a cone width
of R = 0.4 [41]. The jets are required to have transverse momentum pT > 25 GeV and
a pseudorapidity |η| < 2.5. The "DL1dv01:Continuous" algorithm is used for b-tagging.
DL1dv01 is an algorithm that uses track and secondary vertex information to identify b
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6. Object Definition & Event Selection

Figure 6.1.: Summary plot of the different signal regions with the cuts according to the
preselection. Only statistical uncertainties are shown.

quarks [42]. The continuous refers to the division of events in semi-continuous bins. For
example, 85% of all true b-jets pass the selection to the 85% efficiency bin.

6.2. Preselection

The preselection aims at reducing the backgrounds. The sample is also divided into regions
in the preselection. The backgrounds covered in this analysis are the tt̄ background, the
diboson background which includes WW and WZ events which do not emerge from
Higgs decays. In addition, there are the V jets and V γjets backgrounds. Here V is a W

or a Z boson. The Wt process and other decays originating from Higgs bosons are also
included. Other relevant backgrounds like fake leptons are not considered in the analysis.
The HWW signal only includes gluon-gluon-fusion (ggf) and not the other production
channels. The SM hypothesis is used for the HWWggf sample.

The preselection is based on previous H → WW ∗ analyses as in reference [43]. Top
quarks almost always decay in a b quark and into a W boson [17]. To account for
background with top quarks, zero b-jets with an efficiency of 85% are required. Exactly
one electron and one muon are needed to reduce background events with Z boson decays
where two electrons or two muons are created. Since the W bosons appear in the Higgs
decay they have opposite electrical charges. The leptons must therefore also have opposite
charges. Additionally, the leading lepton is required to have a transverse momentum of
pT (l1) > 22 GeV and the sub leading lepton of pT (l2) > 15 GeV. The missing transverse
energy is suspected to be non-zero because neutrinos are in the final state. Therefore,
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6.2. Preselection

Table 6.1.: Selection for the preselection regions at reconstruction level.
Variable description reconstruction level cuts
Preselected regions PR2l0j PR2l1j PR2l2j
Jet multiplicity Njets = 0 Njets = 1 Njets ≥ 2
b-jet multiplicity Nb-jets85% = 0
Lepton multiplicity Ne = 1 & Nµ = 1
Lepton charge qe = −qµ

Lepton transverse momentum pT (l1) > 22 GeV & pT (l2) > 15 GeV
Missing transverse energy EMiss

T > 20 GeV
Invariant mass leptons 10 GeV < mll < 100 GeV

Table 6.2.: Selection for the fiducial region at truth level used in the analysis.
Variable description truth level cuts
Lepton multiplicity Ne = 1 & Nµ = 1
Lepton charge qe = −qµ

Lepton transverse momentum pT (l1) > 22 GeV & pT (l2) > 15 GeV
Missing transverse energy EMiss

T > 20 GeV
Invariant mass leptons 10 GeV < mll < 100 GeV

EMiss
T > 20 GeV is used as a cut. Also, mll > 10 GeV is required to remove meson

resonances and Drell-Yan background. Additionally, mll < 100 GeV is required to reduce
the tt̄ background. Since the background varies for different numbers of jets the analysis is
divided into three preselection regions. One region with no jets (PR2l0j), one with exactly
one jet (PR2l1j) and one with two or more jets (PR2l2j). This has the disadvantage that
the size of each sample in each region is smaller. The advantage, however, is that the
individual backgrounds in each signal region can be examined in more detail. This is
especially helpful since each region has different backgrounds as shown in the summary
plot Figure 6.1. The strongest background in PR2l0j are diboson and V jets and in PR2l2j
tt̄. The three backgrounds are also the strongest in PR2l1j. Table 6.1 summarizes the
preselection.

The definition of the fiducial region at truth level matches the one at reconstruction level
in the cuts in missing transverse energy and the lepton selections. Definitions including
the jet multiplicity are not possible because they are not accessible at parton level for the
HWWggf sample. The selections at parton level are summarised in Table 6.2.
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6. Object Definition & Event Selection

6.3. Event Classification

The selected events in the different preselected regions are classified into signal and control
regions. The event classification is divided into two steps. At first, HWW ∗ events and the
strongest backgrounds are classified into signal and control regions. The second step filters
out HWW ∗ events in the signal regions that contain τ -decays. Dense neural networks are
used for the event classification. For this reason, the foundations of dense neural networks
are explained below.

Basics of Dense Neural Networks

Dense neural networks (DNN) are machine learning tools that train a model on an input
sample to make predictions without additional user input. A DNN consists of different
layers of nodes. The nodes are individual units in a layer. For each layer, the activation
function σ is defined. The input function receives an input x⃗ from every node in the
previous layer and produces an output for every node in the next layer x′. The output of
a node is

x′ = σ(x⃗ · w⃗ + b)

where w⃗ are the weights of the previous layer and b is the bias of the node. The first layer
is called the input layer, and the last is the output layer. Between these two layers are
hidden layers, where the input sample is processed. The activation function of the output
layer is called the output activation function.

The target is compared with the output of the DNN. The loss function L, that takes
the target and the output of the DNN as input, is defined. This loss function returns a
positive value, the loss. The training of a DNN refers to optimising the model to classify
the input more precisely. To accomplish this goal, the loss is minimised. This is achieved
by recalculating the weights and biases in each training iteration. The initial weights and
biases are chosen randomly. The vector ω⃗l stores all weights and biases of one layer l.
In the training, the gradient of the loss function ∇ω⃗l

L for the weights and biases in one
layer is calculated, starting with the output layer. The initial weights and biases are then
updated into the opposite direction of ∇ω⃗l

L. The step size is given by the learning rate
λ. The updated weights and biases of the layers ω⃗l

′ are then given by

ω⃗l
′ = ω⃗l − λ∇ω⃗l

L

The other layers are recursively updated similarly from back to front after the output
layer. This technique of calculating the gradient of the individual layers from back to
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6.3. Event Classification

Table 6.3.: Input variables for the DNN. The input variables for the τ classifier are
marked with τ and for the signal background classifier with S/B.

variable description Classifier
EMiss

T missing transverse energy S/B, τ
EMiss

ϕ azimuthal angle of themissing transverse energy S/B, τ

pT (li) transverse momentum of the ith lepton S/B, τ
η(li) pseudorapidity of the ith lepton S/B, τ
ϕ(li) azimuthal angle of the ith lepton S/B, τ
E(li) energy of the ith lepton S/B, τ
pT (ji) transverse momentum of the ith jet S/B
η(ji) pseudorapidity of the ith jet S/B
ϕ(ji) azimuthal angle of the ith lepton S/B
E(ji) energy of the ith jet S/B

front recursively is called backpropagation [44, 45]. The training is divided into epochs, in
which the same steps are repeated. After each iteration through the network, the loss is
calculated again. The DNN learns in an epoch when the difference between the loss after
two iterations is larger than the positive real number ∆min. If the loss is smaller than
∆min the machine learning model no longer learns significantly. Training repeats until the
classifier does not learn something after a certain number of iterations. This number of
iterations is called patience.

The machine learning model must be validated on a second statistically independent
sample. This sample is called the validation sample. The machine learning model is
overtrained if it classifies the validation sample worse than the training sample. This is
the case, if the loss of the validation sample is greater than that of the training sample.
On the other hand, the model is underfitted if the loss of the training sample is larger
than the loss of the validation sample.

HW W ∗ Signal Classification

A multiclass classifier based on a DNN is used to separate the sample into control and
signal regions. It is trained to distinguish between the signal and the dominating back-
grounds diboson, tt̄ and V jets. This multiclass classification allows greater control over
these backgrounds. A classifier is trained for each preselection region. Therefore, control
regions for each dominating background and each jet multiplicity are used. The signal in
the training includes both the pseudo-reconstruction CAR and the reconstruction SM sam-
ple, to reduce bias towards one of these samples. The results of the pseudo-reconstruction
CAR sample are reweighted during the training, such that the yield of CAR and SM
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6. Object Definition & Event Selection

Table 6.4.: Selection for each signal region at reconstruction level used in the analysis.
The preselection is as in Table 6.1. The additional selection criteria are
written in bold.

Variable description reconstruction level cuts
Signal regions SR2l0j SR2l1j SR2l2j
Jet multiplicity Njets = 0 Njets = 1 Njets ≥ 2
b-jet multiplicity Nb-jets85% = 0
Lepton multiplicity Ne = 1 & Nµ = 1
Lepton charge qe = −qµ

Lepton transverse momentum pT (l1) > 22 GeV & pT (l2) > 15 GeV
Missing transverse energy EMiss

T > 20 GeV
Invariant mass leptons 10 GeV < mll < 100 GeV
HW W ∗ classifier P (HWW ) is maximal probability
τ -tagging P (eµ) > 0.35

sample are the same in every region. The classifier for each region of 0, 1 and more than
2 jets is trained on the missing transverse energy, the lepton kinematics and jet kinemat-
ics. PR2l2j is only trained on the two leading jets. All functions that are used in the
training of the classifiers are defined in Appendix C. The used neural networks consist
of three layers with 50 nodes each and a learning rate of 0.001. To reduce the effect of
overtraining, the classifiers are regularised. In the first two layers the batch normalisation
[46] is added, and the last two layers are dropout layers [47] with a dropout probability
of 10%. The used optimizer is Nadam [48] and the output activation function is softmax.
ReLU and tanh are used as activation functions. The patience is 30 and ∆min = 0.001.
The categorical_crossentropy is used as the loss function. The multiclass classifier
has one output variable for the signal and each background type it is trained on. These
variables describe the probability that an event is of the corresponding type according to
the model. Thus, the sum of all output variables is one. This is because the softmax
is used as the output activation function. The training is divided into two statistically
independent folds. This means that the sample is divided into two samples. For each
sample, a model is trained independently. An event is assigned to the signal HWWggf

or one of the backgrounds B if the corresponding probability P (HWW ) or P (B) is the
maximal probability for the event. The signal and control regions are denoted similarly
to the preselection regions. For example, the signal region for 0 jets is denoted as SR2l0j
and the tt̄ control regions as CR2l0j(tt̄).
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Figure 6.2.: On the left is the ratio of the truth and reconstruction level mll. On the
right is the rejection plotted over the efficiency. The rejection axis is scaled
logarithmically. The working point with ϵeµ = 0.85 and rτ = 1.88 is marked
with a red dot.

τ Decay Classification

Another background are τ leptons from the W decay, which decay further to the lighter
leptons. The mll of the truth events of the τ -decays is mostly larger than the mll of
the reco events. This can be seen from the ratio between the truth and the reco mll in
Figure 6.2. The distribution of the τ decays has many events where the ratio is larger
than 1. The τ -decays influence therefore the studied observable mll.

Only about 20, 000 events with τ decays are included in these samples. Due to the
low statistics of the τ decays in the HWWggf sample, it is not useful to divide them into
signal regions. Therefore, one binary classifier is trained on all signal regions to distinguish
between the τ decays and the eµ events without τ -decay. The binary classifier is only
trained on the missing transverse energy and the kinematics of the leptons. The structure
of the DNN is the same as for the other classifiers. Only the output activation is changed
to sigmoid and the loss function to binary crossentropy. The classifier has therefore
only one output. The probability, that an event does not contain a τ -decay, is P (eµ).

The tagging efficiency ϵeµ is defined as the probability that an eµ event is identified as
an eµ event by the classifier. The inverse of the probability, that the classifier identifies
an event with a τ -decay as such is the tagging rejection rτ . For a suitable working point
of the classifier, the tagging rejection and the tagging efficiency should be as large as
possible. In Figure 6.2, the connection between the tagging rejection and the tagging
efficiency is shown. This shows that high tagging rejection and high tagging efficiency
can not be reached simultaneously. A working point of ϵeµ = 0.85 which corresponds to
rτ = 1.88 is used. This keeps most of the eµ events while approximately 47% of τ decays
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6. Object Definition & Event Selection

are rejected. An event is therefore classified as an eµ without τ -decay if P (eµ) > 0.35.
There is no additional control region for τ decay. This control region would not receive
enough events to improve the understanding of the backgrounds. The selection for the
signal regions is summarised in Table 6.2 and for the control regions in Table D.1 in the
Appendix.

6.4. Evaluation of the Event Classification

The confusion matrix compares the classifier’s prediction to the true label. Each row
shows the true label and the column is the label the classifier assigned. A matrix element
of the confusion matrix is the probability that the classifier assigns an event one type to
the corresponding column type.

The receiver operator characteristics (ROC) is the true positive rate plotted against
the false positive rate. It describes the separation qualities of the classifier for one output
variable. Furthermore, the area under the ROC curve (AUC) measures the classifier’s
overall performance. The higher the AUC, the better the separation quality of a classifier.
The AUCNom is the AUC of the original input and the AUC is the AUC when one
input variable is permuted with random noise. With this, the permutation importance is
calculated as,

AUCNom − AUC
AUCNom

.

The permutation importance measures the impact of an input variable on the output.
This thesis considers only the training sample in the permutation importance and con-

fusion matrix. The other parts consider the training and the validation sample.

Evaluation of the HW W ∗ Signal Classification

In the first step, an event is classified as HWWggf if the probability, of an event being
HWWggf, namely P (HWW ), is larger than any of the background probabilities. To
study potential biases of the classifier with respect to SM events or CAR events the two
distributions of P (HWW ) are compared as shown in Figure 6.3. The classification in all
regions slightly favours SM events over CAR events. This manifests itself in general higher
P (HWW ) values for SM events compared to CAR events. This behaviour is expected
since the SM sample differs more from the background than the CAR sample. This is
shown in the separation of CAR events and SM events with respect to the background in
mll in Figure 6.4. It is noticeable, that the CAR distribution in PR2l0j has an increasing
number of events for small values of P (HWW ) and PR2l1j for high values of P (HWW ).
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Figure 6.3.: Separation of the pseudo-reconstruction CAR and the reconstruction SM
sample in the classifiers output P (HWW ). On the left for PR2l0j, in the
middle for PR2l1j and on the right for PR2l2j.
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Figure 6.4.: Separation of mll for the SM and the background on the left and pseudo-
reconstruction CAR and background on the right.

This is not the case in the other regions. This could indicate some outliers in these
two regions. Figure D.3 in the Appendix D shows the loss for the different folds of the
classifiers. The loss of the validation and training sample in PR2l0j shows no difference
in the first fold. In the second fold, the validation sample has a negligible higher loss.
The loss converges in both cases. The effect of overtraining is therefore negligible for this
classifier. In the other two regions, the difference between validation and training samples
is also negligible and the loss converges except in the first fold in PR2l2j. The validation
sample has a smaller loss in this fold. Thus the model is minimally underfitted. The loss
of the validation sample has spikes in the folds in PR2l1j and in the second fold in PR2l2j.
This is likely due to the small size of the signal sample in these two regions. The number
of events in each region is shown in Figure D.1 in Appendix D. The SM signal in SR2l0j
has a sample size of about 200, 000 events compared to about 100, 000 events in PR2l2j.
The validation phase space in PR2l2j is therefore only half as large as in PR2l0j. The
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Figure 6.5.: The perturbation importance of the multiclass classifier in PR2l0j of Di-
boson on the left and HWWggf on the right.

validation size can be increased by including additional folds to the training. With three
folds the sample size of 50% would be increased to 75%.

The permutation importance of the input variables for the training is shown in Fig-
ure 6.5 and in Figure D.4, Figure D.5 and Figure D.6 in the Appendix. Both the energy
of the leptons and jets are negligible for the training. The other kinematic variables of
the jet are also mostly negligible. They are however relevant for the classification of the
tt̄ and the diboson background events. The importance in the classification of tt̄ events
is expected since the jets originate most likely from top decays. The angular variables of
the leptons ϕ(li) and η(li) are important for all classifications and especially for the signal
HWWggf classsification. This is interesting since these influence the behaviour of the ob-
servables mll, ηll and ϕll strongly. The other kinematics of the leptons are less important
but have a non-negligible contribution. The missing transverse energy, on the other hand,
is important. Since many of the processes like HWWggf and tt̄ contain neutrinos, this is
to be expected.

The confusion matrix for PR2j0j is shown in Figure 6.6 and in Figure D.2 in the Ap-
pendix for PR2l1j and PR2l2j. Additionally, the ROC curves are shown in Figure D.4
for PR2l0j, Figure D.5 for PR2l1j and Figure D.6 for PR2l2j in Appendix D. The classi-
fication of the signal HWWggf is correct for more than 70% of the events in SR2l0j and
SR2l1j. The classification in SR2l2j is worse with only 66%. This could be because the
jets originate from initial state radiation that influences the signal. The diboson back-
ground is the background that is most frequently identified as HWWggf. More than 20%
of the diboson events are classified as signal. This is anticipated since diboson events
comprise WW events. The V jets event classification is the best. Over 80% are assigned
correctly and the AUC is larger than 0.9. The diboson and tt̄ background have the best
classification in CR2l0j with 66% and 45% correctly assigned events. It is also noticeable
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6.4. Evaluation of the Event Classification

Figure 6.6.: The confusion matrix for the classifier in PR2l0j.

that diboson is more often misidentified as tt̄ in the regions with jets. This could again
be due to the influence of next-to-leading order processes like initial state radiation.

Evaluation of the τ Decay Classification

The network output is the probability that an event includes no τ -decay P (eµ). The
separation is shown in Figure 6.7 and the working point is marked with a vertical line. If
P (eµ) > 0.35 the events are classified as eµ without τ -decays. The CAR distribution has
a larger amount of events in the rejected domain P (HWW ) ≤ 0.35. The SM sample is
therefore favoured over the CAR sample. The difference in rejected CAR and SM events
is however negligible. As described in Section 6.3 a dense neural network is used to tag
and filter the τ decays. The validation loss of both folds is around 0.3 larger than the loss
of the training sample. The model is therefore overtrained. The cause is the small number
of τ decays in the sample. Only about 20.000 events with τ decays are in the sample.
The AUC is small with values around 0.75 as shown in Figure D.7 in the Appendix. The
separation quality of the classifier is therefore limited. The reason for this could also be
the small sample size. For better training results, a larger sample size is required. The
most important variable for the training is EMiss

ϕ as seen in the figures in Figure D.7. The
variables of the missing transverse energy are important for the training since additional
neutrinos are involved in the τ decays. As before for the other classifiers, the angular
variables of the leptons are also important for the training.

Summary of the Event Classification

Figure 6.8 shows the signal and background distribution in the regions. In particular the
background of the V jets dominates its control regions. The diboson control regions CR2l0j
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Figure 6.7.: Separation for the probability P (eµ) for the pseudo-reconstruction CAR
and the reconstruction SM sample. The working point is marked with a
vertical line.

Figure 6.8.: Summary of the different signal and control regions. Only the statistical
uncertainties are shown. The signal regions are shaded gray and the mea-
sured data points are not shown in those regions.

and CR2l1j are dominated by diboson. However, the CR2l2j for dibsoson is dominated
by tt̄. In the tt̄ control regions CR2l1j and CR2l2j has tt̄ the largest yield. In CR2l0j
the diboson background is as strong as the tt̄ background. The signal is mostly in the
signal regions and the amount of signal in the control regions is negligible. SR2l1j and
especially SR2l0j have large contributions from diboson events while SR2l2j has a large
contribution of tt̄ events.
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7. Analysis Strategy and Methods

As mentioned before, the analysis aims at investigating if the observables mll, ϕll and ηll

are sensitive towards quantum entanglement. For this investigation, two hypotheses are
considered. The first is the SM hypothesis that the state is entangled. This hypothesis
is assumed to be true and is treated as pseudo data. The second hypothesis is the
null hypothesis of a separable state, the CAR hypothesis. To examine the sensitivity of
the observables to quantum entanglement, exclusion limits for the CAR hypothesis of a
separable state are calculated under the assumption that the SM pseudo data is true.

In the analysis, the sample of the measured observables is at reconstruction level, while
the simulated sample for the CAR hypothesis of a separable state is only available at
parton level. To compare the input samples, either the measured data needs to be trans-
formed from reconstruction to parton level or the simulations have to be transformed
to reconstruction level. The first technique, to transform reconstruction to parton level,
is called unfolding. In this thesis, a binned unfolding is performed. The truth and the
reconstruction information are stored in one-dimensional histograms with N and M bins.
Then the parton yield tn in bin n is transformed to the reconstruction level data rm in
bin m by folding [49]

rm =
N∑
n

Rmntn (7.1)

with the response matrix R. The response matrix element Rmn contains the probability
that a parton in bin n produces an event at reconstruction level in bin m. The efficiency
ϵn of the nth bin is defined as the probability of passing the reconstruction level selection
for an event in the nth truth bin. The acceptance Am is the probability of passing the
truth level selection for an event in the mth reconstruction bin. Further, the migration
matrix is the number of events that are reconstructed in the mth reconstruction bin and
generated in the nth truth bin. The normalised migration matrix Mmn is normalised in
every column to one. With these definitions, the response matrix can be calculated as
[49]

Rmn = Mmn
ϵn

Am

.

The unfolding technique used in this analysis is a binned profile likelihood unfolding
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(PLU). Each truth bin of the signal distribution is folded with the response matrix to get
a reconstruction distribution according to Equation (7.1). Thus, there is a distribution of
M reconstruction bins for each truth bin. A normalisation factor µi is assigned to each
truth bin. These normalisation factors are determined by fitting the calculated recon-
struction distribution to given data. The unfolded distribution is then reconstructed by
applying the normalisation factors on the data [50]. To account for systematic uncertain-
ties of the simulated sample nuisance parameters θj are added to the fit. The systematic
uncertainties are assumed to be Gaussian. The measured data is divided into regions. The
measured data in each region r and in nth bin nr,i is assumed to be Poisson distributed.
The expected signal strength and the expected background strength in the region r in the
ith bin are Sr,i and Br,i. The normalisation factors µi and the nuisance parameters θj are
contained in the vectors µ⃗ and θ⃗. With these, the likelihood of the model is [50]

L(n⃗|µ⃗, θ⃗) =
∏

r∈regions

∏
i∈bin

Pois(nr,i|Sr,i(θ⃗, µ⃗) + Br,i(θ⃗, µ⃗))
∏

j∈syst
Gauss(θj).

The profile likelihood can then be calculated as,

Lprofile(n⃗|µ⃗) = max
µ⃗=const.

[
L(n⃗|µ⃗, θ⃗)

]
,

and a regular profile likelihood fit can be performed to determine the normalisation factors.
In this thesis, no real data is used in the PLU. Instead, fits with the simulated SM

distributions as pseudo data are performed. The unfolded SM distribution is compared
with the truth CAR distribution and an exclusion limit for the separable CAR hypothesis
is calculated.

The exclusion limits of the null hypothesis are calculated using a χ2-test [51]. From
the test results, the σ exclusion limits are calculated. This thesis aims to find sensitivity
with exclusion limits larger than 5σ for the separable CAR hypothesis.
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8. Analysis Results

In the following chapter, the results are presented and discussed. First, the binning of
the observables, the migration matrix, the efficiency and the acceptance are described.
The implemented uncertainties are then named. Afterwards, the unfolding results and
exclusion limits are displayed. Finally, the uncertainties of the fit are discussed.

8.1. Preparation of the Observables for the Unfolding

The binning must be chosen such that the statistical error is small. Furthermore, a
sufficient number of degrees of freedom (NDF) are required for the unfolding. Four bins
are the best regarding the unfolding results. The binning of the observables further meets
two conditions in all signal regions. The relative statistical MC error of the diagonal
elements in the migrating matrices has to be smaller than 0.8% and no diagonal bins of the
migration matrix are allowed to be empty. This choice of binning prevents uncertainties
in one bin from being much larger than in the other bins. To achieve that binning, the
bins of the finely binned migration matrix are merged from left to right recursively until
both conditions are satisfied. The normalised migration matrices, the efficiencies, the
acceptance and the distribution of the events in the signal regions are shown in Figure 8.1
for SR2l0j and in Figure E.1 and Figure E.2 in Appendix E for SR2l1j and SR2l2j. The
migration matrices should be as diagonal as possible for the unfolding. That reduces
the statistical fluctuations and correlations between the different bins. The portion of
diagonal elements together in all signal regions are 94.6+0.6

−0.6 % for mll, 99.6+0.3
−0.6 % for ϕll

and 99.5+0.3
−0.6 % for ηll. The three observables are therefore mostly measured within the

bin in which they are generated.
The efficiency is smaller than 10%. Thus, most events in the fiducial region at truth

level are not measured in the signal regions at reconstruction level. The efficiency is the
smallest in the fourth bin. In contrast, the acceptance is larger than 85% and therefore
significantly larger than the efficiency. The acceptance is distributed approximately uni-
formly in SR2l0j and SR2l1j. In SR2l2j, the acceptance is not as uniformly distributed.
The acceptance is the smallest in the first bin.
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Figure 8.1.: Different figures for the studied observables in SR2l0j. On the left is mll,
in the middle is ϕll and on the right is ηll. On the top is the distribution
in the signal and the backgrounds. The signal regions are shaded gray
and the measured data points are not shown. The second row shows the
normalised migration matrices, the third row shows the efficiency and the
fourth row shows the acceptance. Only statistical uncertainties are shown
in all figures.
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8.2. Systematic Uncertainties

Table 8.1.: Experimental systematic uncertainties included in the PLU and their de-
scription.

experimental systematic description

- pileup Uncertainties in the modelling of jets due to
pileup

- variations of b-tagging scale factor in light,
c and b quarks

Uncertainties of the b-tagging in the
DL1dv01 neural network in identifying b, c-
and light quarks

- electron scale factor
Uncertainties in the reconstruction of
electrons and muons

- muon scale factor identification
- muon scale factor identification track to ver-
tex association (TTVA)

8.2. Systematic Uncertainties

The simulated sample is affected by systematic uncertainties. These can be divided into
different groups. The first group is the experimental uncertainties. The studied experi-
mental uncertainties are flavour tagging uncertainties, lepton identification uncertainties
and uncertainties in the pileup estimations. The included experimental uncertainties are
listed in Table 8.1. Other experimental uncertainties are not included in the analysis
because the simulated samples used in this analysis are incomplete. To account for the
systematic uncertainties the event weights are shifted up or down by one standard devia-
tion. Using the shifted weights the migration matrix, the efficiency and the acceptance are
calculated again and the unfolding is performed. The uncertainties on the fit are estimated
with these results. The systematic uncertainties of the cross-section of the backgrounds
are included. The backgrounds without dedicated control regions, i.e. Wt, V γjets and
other H are estimated conservatively to have normalisation uncertainties of overall 50%
[17]. The other dominant backgrounds, i.e. tt̄, diboson and V jets are estimated in the
unfolding procedure using free-floating normalisation factors.

8.3. Unfolding Results

As mentioned before, fits with the simulated SM distributions as pseudo data are per-
formed for the PLU. All regions are unfolded simultaneously for each observable. The
Unfolded distributions of the three observables mll, ϕll and ηll including τ -tagging are
shown in Figure 8.2. The unfolding is also performed without τ -tagging to profit from
larger statistics as a comparison. The unfolded distributions without τ -tagging are shown
in Figure E.3 in the Appendix. In both cases, the exclusion limits are calculated for only
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Figure 8.2.: The unfolded distributions of the three observables. The bin entries are
divided by the bin width. The results include τ -tagging at 85%. On the
top left is mll, on the top right is ϕll and at the bottom is ηll

the statistical uncertainty and the total uncertainty. The total uncertainty contains the
statistical and systematic uncertainties. The normalisation of the histograms is a free
parameter in the fit. The number of degrees of freedom is therefore the number of bins of
the histogram, NDF = 4. The calculated exclusion limits are summarised in Table 8.2.
The CAR distribution using ηll is within the uncertainty of the unfolded SM distribution
with and without using τ -tagging. All the calculated exclusion limits provided by ηll are
smaller than 1σ . It is noticeable that the statistical uncertainty is better without using
τ -tagging, due to the larger number of events. However, all the statistical-only exclusion
limits provided by mll and ϕll are larger than 5σ. They are therefore larger than the
desired exclusion limit of 5σ. The τ -tagging increases the control over the systematic
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8.4. Evaluation of the Unfolding Results

Table 8.2.: Exclusion limits for the CAR (separable) hypothesis for statistical and to-
tal uncertainty provided by the three observables. The total uncertainty
includes statistical and systematic uncertainties. Rounding to the first digit
is applied.

Observable τ -tagging σ exclusion limits
total stat. only

mll 85% efficiency 4.3 6.0
mll - 4.1 6.8
ϕll 85% efficiency 3.7 5.2
ϕll - 3.7 5.7
ηll 85% efficiency 0.4 0.7
ηll - 0.4 0.9

Table 8.3.: Normalisation factors for the different bins and observables in the PLU in-
cluding τ -tagging at 85% efficiency.

Observable Bin 1 Bin 2 Bin 3 Bin 4
mll 1.00+0.24

−0.24 1.00+0.19
−0.19 1.00+0.16

−0.16 1.00+0.18
−0.19

ϕll 1.00+0.23
−0.23 1.00+0.18

−0.18 1.00+0.17
−0.17 1.00+0.16

−0.15

ηll 1.00+0.22
−0.21 1.00+0.18

−0.17 1.00+0.17
−0.16 1.00+0.18

−0.18

uncertainties using the variable mll. The exclusion limit with the total uncertainty using
mll including τ -tagging is 4.3σ. Without τ -tagging the exclusion limit is significantly
lower with 4.1σ. In all cases mll provides the best sensitivity. The observable ϕll provides
worse sensitivity to quantum entanglement. Nevertheless, the exclusion limits provided
for the separable state by ϕll are still larger than 3σ and 5σ for total and statistics-only
uncertainty, respectively. The τ -tagging does not influence the exclusion limits if the total
uncertainty is considered for ϕll, both are 3.7σ.

The τ -tagging increases therefore the control over the systematic uncertainties, while
it decreases statistics. Below, the results using tau tagging are discussed in more detail
since the results for the total uncertainty are more sensitive.

All normalisation factors are one since a fit with the SM prediction as pseudo data is
performed. Their uncertainties are listed in Table 8.3.

8.4. Evaluation of the Unfolding Results

A closure test is performed to examine if the PLU is statistically independent. The sample
is divided into two statistically independent sets with even and odd event numbers. The
set with even event numbers is treated as pseudo data and is called the test sample. The
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Figure 8.3.: The closure of the different observables. Only statistical uncertainties are
shown. The bin entries are divided by the bin width. On the top left is
mll, on the top right is ϕll and on the bottom is ηll.

sample with odd event numbers is used to derive the response matrix for the unfolding.
It is called the training sample. Then the PLU is performed with the pseudo-data and
the response matrix derived from the training sample. The unfolded distribution with
the test and the training sample are shown in Figure 8.3. The pseudo data agrees with
the unfolded distribution despite negligible deviations within the uncertainties. These
deviations are smaller than 0.5%. Therefore, the two samples’ statistical differences do
not significantly affect the fit.

To examine the systematic uncertainties let θ̂ be the profile likelihood estimator of the
uncertainties and θ0 and ∆θ the pre-fit value and uncertainty. Then the pull distribu-
tions of the nuisance parameters are defined as (θ̂ − θ0)/(∆θ). The pull distributions are
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Figure 8.4.: Pulls of the nuisance parameters of the PLU of the observable mll.

predicted to be a standard Gaussian distribution with an expectation value of 0 and a
standard deviation of 1. The pulls for mll are shown in fig. 8.4 and for ϕll and ηll in
Figure E.4 in Appendix E. The desired expectation value of 0 is always met in the fits
since a fit with the simulated pseudo-data is performed. However, the standard deviation
is smaller than 1 for some systematics. These systematics are constrained by the data.
That means that the expected uncertainty is larger than the uncertainty obtained from
the fit. The background normalisations of Wt, V γjets and other H are constrained. These
constraints are expected since these normalisation uncertainties are estimated conserva-
tively. However, some of the experimental uncertainties are also constrained by the fit.
The constrained experimental uncertainties are the first eigenvalue of the b-tagging and
c tagging uncertainties in SR2l1j and SR2l2j and the scale factors (SF) of the electron
in SR2l1j. There should not be large constraints because the experimental uncertain-
ties are estimated more precisely. An issue in the modelling of the named experimental
uncertainties is suspected.

The ranked impact of the systematic uncertainties on the fit is shown in Figure 8.5 for
mll and in Figure E.5 and Figure E.6 in the Appendix for ϕll and ηll. The dominating
uncertainties for mll in the first bin and ϕll in the first two bins is the V γjets normalisation.
This could be due to the assumed normalisation uncertainty of 50% and that it cannot
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Figure 8.5.: Ranking of the impact of the different systematic uncertainties of the PLU
for mll. The normalisation factors are marked with a red dot. The other
uncertainties are marked with a black dot. On the top left is the first bin,
on the top right is the second bin, on the bottom left is the third bin, and
on the bottom right is the fourth bin.

be controlled well in the control regions. Anyway, it is large compared to the other
backgrounds that are modelled in the same way. The impact of the pileup uncertainty in
SR2l0j is large in every bin. The uncertainties of the normalisation factors of the diboson
and V jets background are also relatively large. Since these two are some of the largest
backgrounds this is expected. Further, it is surprising that the impact of the normalisation
factor of tt̄ is much smaller compared to the other two dominating backgrounds. The
impact of the systematics on the fourth bin is the largest in all the observables. It is also
noticeable that some of the pre-fit impacts of the uncertainties are asymmetrical. This is
especially the case for the constrained b-tagging uncertainties. However, the uncertainties
are expected to be more symmetrical. This supports the assumption of an issue in the
calculations of these uncertainties.
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9. Conclusion and Outlook

The thesis investigates the experimental sensitivity towards quantum entanglement in the
H → WW ∗ → eνµν final state. Two hypotheses are considered: One of an entangled state
(the SM hypothesis) and one of a separable state (the CAR hypothesis). The SM model
hypothesis is used as pseudo data, while the CAR hypothesis is treated as a null hypothesis
to exclude. The aim is to exclude the CAR hypothesis at 5σ. The studied observables
are mll, ϕll and ηll. The SM hypothesis is produced with MC simulations and detector
simulations with Geant4. The truth information of the separable state is produced with
the custom angle replacement algorithm from the already created SM distribution. No
full detector simulation is performed to produce a CAR sample at reconstruction level.
Nevertheless, a full detector simulation would be more precise and should be done in the
future.

The signal and background are separated into multiple signal and control regions by
multiclass classifiers. The classifiers are a dense neural network. The classification into
different regions is successful, but they favour the entangled state over the separable state.
A dense neural network is also used as a binary classifier to distinguish between τ decays
and eµ events. This classifier is overtrained. To improve the training, a larger sample
size is required. The τ -tagging has no significant influence on the observables ϕll and ηll

but it improves the exclusion limits for the separable state in mll. Therefore, τ -tagging
is a promising approach. Even though all classifiers show promising results they need
to be revised and improved. The multiclass classifier needs to be improved regarding
the bias towards the entangled state and the binary classifier regarding the overtraining.
Additionally, a hyperparameter optimisation should be performed. An improved classifier
could also offer better control over the statistical uncertainties. Furthermore, the fake
lepton background and the Higgs production modes vector-boson-fusion, Higgs Strahlung
and associated with a top pair need to be included into the analysis.

A binned profile likelihood unfolding of the pseudo data is performed. A performed
closure test shows that the fit is statistically independent. However, additional closure
tests of the fit should be done. Both statistical and systematic uncertainties influence the
fit. The included experimental systematics are the flavour tagging uncertainties, pileup
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9. Conclusion and Outlook

uncertainties and lepton scale factor uncertainties. The pseudo data constrains some ex-
perimental systematics. These constraints need to be investigated further, to improve
the understanding of the systematics. To investigate the sensitivity towards quantum
entanglement a χ2 test of the unfolded distribution and the separable hypothesis is done.
The observable ϕll, however, is promising for studying entanglement. This observable ex-
cludes the separable state at exclusion limits of 3.7σ. From the three studied observables,
mll provides the best exclusion limit with 4.3σ. Even though mll is the most promising
observable of the three examined it can not be used to exclude a separable state at 5σ

thus far. The exclusion limits provided by ϕll and mll based on only statistical uncer-
tainties are beyond 5σ. Again mll provides the highest sensitivity here. The calculated
exclusion limit for the CAR hypothesises using ηll is smaller than one sigma. Therefore,
ηll is experimentally less sensitive to quantum entanglement than mll and ηll.

Through further studies, for example with the previously mentioned approaches, an
improvement to a 5σ exclusion limit, for the total uncertainty using mll and ϕll, is likely
achievable. As a final result, the approach of custom angle replacement is promising for
investigating quantum entanglement in H → WW ∗ → eνµν final states. Especially the
observables ϕll and mll are promising.
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A. Monte Carlo Generators

Table A.1.: The different MC generators [52–54] used in this analysis for the different
signal and background samples.

Sample Generator Parton Shower
HWWggf (Signal) Powheg [52] Pythia 8 [53]
Diboson Sherpa 2.2.2 [54]
tt̄ Powheg Pythia 8
Wt Powheg Pythia 8
V jets Sherpa 2.2.11
V γjets Sherpa 2.2.11
Other Higgs Powheg Pythia 8
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B. Additional Evaluation of the
Pseudo-Reco CAR Sample
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Figure B.1.: Separation plots for the kinematic variables of the leading lepton for the
SM sample on reconstruction level and the pseudo-reconstruction CAR
sample.
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Figure B.2.: Separation plots for the kinematic variables of the sub-leading lepton for
the SM sample on reconstruction level and the pseudo-reconstruction CAR
sample.
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C. Machine Learning Functions

Functions that are used in the machine learning classifiers in Section 6.3 are defined here.

Activation Functions

ReLU

The ReLU function for an input x is defined as

ReLU(x) = max (0, x)

tanh

The tanh function for an input x is defined as

tanh (x) = ex − e−x

ex + e−x

Output Activation Functions

Softmax

The softmax function transforms a vector of real-valued x⃗ into a set of probabilities x⃗′.
It is defined as

x′
i = softmax(x⃗, i) = exi∑

j exj

Sigmoid

The sigmoid function transforms a real-valued x into a probability x′. It is defined as

x′ = sigmoid(x) = 1
1 + e−x
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C. Machine Learning Functions

Loss Functions

Categorical Cross-Entropy

Let t⃗ be the target and p⃗(x⃗) be the prediction of the classifier for the input x⃗. The
categorical cross-entropy loss function for the classification into four classes is defined
as

loss(⃗t, p⃗(x⃗)) = CE(⃗t, p⃗(x⃗)) = −
4∑

i=1
ti log (pi(x⃗))

Binary Cross-Entropy

Let y be the target and p(x⃗) be the prediction of the classifier for the input x⃗. The binary
cross-entropy loss function for the classification into two classes is defined as

loss(t, p(x⃗)) = BC(t, p(x⃗)) = −[t log (p(x⃗)) + (1 − t) log (1 − p(x⃗))]
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D. Additional Information for the
Event Classification
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Figure D.1.: Number of MC events for the signal and each background type in each
preselection region. On the top left is PR2l0j, on the top right is PR2l1j
and on the bottom is PR2l2j.
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D. Additional Information for the Event Classification

Figure D.2.: The confusion matrices for SR2l1j on the top for SR2l2j on the bottom.
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Figure D.3.: The loss for each fold for each preselection region for the multiclass classi-
fier. On the top left is PR2l0j, in the middle is PR2l1j and on the bottom
is PR2l2j. The first fold is on the left-hand side and the second fold is on
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Figure D.4.: The perturbation importance and the ROC curve for the output variables
of multiclass classifier in PR2l0j. On the top left is HWW , on the top
right is diboson, on the bottom left is tt̄ and on the top right is V jets.
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Figure D.5.: The perturbation importance and the ROC curve for the output variables
of multiclass classifier in PR2l1j. On the top left is HWW , on the top
right is diboson, on the bottom left is tt̄ and on the top right is V jets.
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Figure D.6.: The perturbation importance and the ROC curve for the output variables
of multiclass classifier in PR2l2j. On the top left is HWW , on the top
right is diboson, on the bottom left is tt̄ and on the top right is V jets.
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Figure D.7.: Evaluation of the DNN model for the τ classifier. The two figures on the
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Figure E.1.: The same results as in Figure 8.1 for SR2l1j.
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Figure E.2.: The same results as in Figure 8.1 for SR2l2j.
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Figure E.3.: The unfolded distributions of the three observables. The bin entries are
divided by the bin width. The results do not include τ -tagging. On the
top left is mll, on the top right is ϕll and at the bottom is ηll.
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Figure E.4.: Pulls of the nuisance parameters in the PLU. On the top is ϕll and on the
bottom is ηll.
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Figure E.5.: Ranking of the impact of the different systematic uncertainties of the PLU
for ϕll. The norm factors are marked with a red dot. The other uncer-
tainties are marked with a black dot. On the top left is the first bin, on
the top right the second bin, on the bottom left the third bin and on the
bottom right the fourth bin.
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Figure E.6.: Ranking of the impact of the different systematic uncertainties of the PLU
for ηll. The norm factors are marked with a red dot. The other uncer-
tainties are marked with a black dot. On the top left is the first bin, on
the top right the second bin, on the bottom left the third bin and on the
bottom right the fourth bin.
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