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1. Introduction

The Standard Model of particle physics is the state of the art theory describing the be-
haviour of fundamental particles and their interactions. However, despite its success, the
Standard Model leaves many questions unanswered, meaning further research remains
inevitable. In this thesis, alternate approaches to an advanced detection technique are
studied. The Prompt Lepton Improved Veto (PLIV) is used for lepton tagging. This tool
aims at enhancement of the discrimination between rare events and background processes
by exploiting the properties of prompt leptons, electrons and muons originating directly
from the decay of heavy particles. By refining the ability to distinguish prompt leptons
from those arising from background sources, the sensitivity of experiments can be signif-
icantly enhanced and the understanding of the underlying physics can be improved. In
this study, approaches for prompt lepton tagging with Deep and Graph neural networks
are presented.
The thesis is structured into 6 chapters, starting with an introduction to the Standard
Model and the theory of the relevant processes in Chapter 2. In Chapter 3, the ex-
perimental setup of the Large Hadron Collider and the Atlas experiment is presented.
Afterwards, in Chapter 4, prompt and non-prompt leptons are defined and their differ-
ences explained in detail. In the fifth chapter the fundamentals of the neural networks
used in this thesis are presented. In Chapter 6 the results of the study on Deep and Graph
neural networks are presented. In the end, a conclusion and an outlook are given.
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2. The Standard Model of Particle
Physics

The Standard Model of particle physics (SM) summarises the knowledge about particle
physics. It contains all known elementary particles and the fundamental electromagnetic,
weak and strong forces. The SM combines the U1, SU2, SU3 symmetries and predicts
massive gauge bosons via the higgs mechanism. The associated Higgs boson was discov-
ered in 2012 [1, 2] The SM is a very successful theory, predicting several particles before
their discovery, most importantly the Higgs Boson. Despite its success, it is not complete,
as gravity is not included in the SM, and neither dark matter nor dark energy can be
described by it, despite them making up most of the universe.

2.1. Elementary particles and their interaction

The SM is the renormalisable gauge-invariant quantum field theory (QFT) with the sym-
metry SUC(3) × SUL(2) × UY(1). It is able to explain the existence of the massive gauge
bosons via the higgs mechanism [3]. The strong interaction is described by quantum
chromodynamics (QCD) with symmetry group SUC(3), while SUL(2) describes the weak
interaction and UY(1) is the symmetry group for the electromagnetic interaction (quan-
tum electrodynamics, QED) [4–7].
The SM differentiates between fermions with spin 1

2 and bosons with integer spin. Fermions
are further divided into leptons and quarks, with three generations being differentiated.
Quarks carry a colour charge and interact strongly, while leptons do not. Per generation,
there are two quarks and two leptons. In the first generation, there are the up and the
down quark, the electron and its neutrino, as seen in Figure 2.1. These particles are all
stable and make up the baryonic matter in our universe. In the second generation, there
are the charm and the strange quark, the muon and its neutrino. The third generation
consists of the top and the bottom quark, the tau and the tau-neutrino. In total, there
are 12 fermions, as well as 12 antifermions with opposite electric charge.
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2. The Standard Model of Particle Physics
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Figure 2.1.: Particle content of the SM of particle physics.

Two important concepts for the weak interaction are helicity, which is the projection of a
particles spin onto its momentum, and chirality, which is an abstract quantum mechanical
concept. Particles with positive chirality are called "right-handed", while particles with
negative chirality are "left-handed". In the relativistic case, where the particles mass
can be neglected, the helicity is equal to the chirality. The weak interaction couples to
right- and left-handed particles differently. While the Z boson couples to both kinds,
the W boson only couples to left-handed particles. This is described by weak isospin
doublets or singlets. The right-handed fermions form singlets, while left-handed fermions
are described by a doublet. The W boson only couples to left-handed particles, which
means only left-handed particles can decay weakly.
Left-handed fermions are divided into up- and down-type fermions by the third component
of their weak isospin (I3). The up-type quarks with I3 = 1/2 consist of up, charm and
top quark. Meanwhile down, strange and bottom quark are the down-type (I3 = −1/2)
quarks. For the leptons, the neutrinos are the up-type leptons, and the electrically charged
leptons (electron, muon, tau) are down-type.
It is important to note, that the particles in the isospin doublets are the weak eigenstates
of the particles. These are related via the Cabibbo Kobayashi Maskawa (CKM) matrix
to the mass eigenstates, which are usually used for particle description. The CKM matrix
describes the mixing of the different flavours in the mass eigenstates, as seen in Equation
(2.1). For example, the third generation doublet contains the top quark and the b′ quark,
and therefore describes the coupling of the top quark to the down quark (Vtd), the strange

4



2.1. Elementary particles and their interaction
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This mechanism allows decays across generations, which is possible in weak interactions
only.
The bosons are the force mediators in the SM. The first discovered boson was the photon,
the mediator of the electromagnetic force, as one of the important discoveries that started
the postulation of quantum mechanics [8, 9]. The next boson discovered was the gluon,
the boson of the strong interaction, at Desy in 1978 [10]. The weak W and Z bosons
were discovered in 1983 at Cern [11, 12], and were predicted by the electroweak theory
formulated in 1968 [5–7]. The last addition was the Higgs boson in 2012, when it was
discovered at Cern by Atlas and Cms [1, 2].
The photon and the gluon have no mass and no electric charge. They mediate the electro-
magnetic force and strong force, respectively. The weak interaction is mediated by W and
Z bosons. The W boson has either electric charge +1 or −1, a mass of 80.377±0.012 GeV
[13] and spin 1. The Z boson has electric charge 0 and a mass of 91.1876 ± 0.0021 GeV
[14]. All of these bosons have spin 1, and are called vector bosons.
The last boson to be introduced into the SM is the Higgs boson, the boson of the Brout-
Englert-Higgs mechanism [3]. The coupling between fermion fields and the Higgs field is
responsible for the mass of the fermions. The mechanism was introduced to explain the
masses of the W and Z boson, because without the spontaneous electroweak symmetry
breaking of the Higgs mechanism, massive gauge bosons cannot exist, since they would
spoil gauge invariance. The Higgs boson has no electric charge and spin 0, with a mass of
125.25±0.17 GeV [15]. For fermions, the Yukawa-coupling descibes the coupling strength
between the fermion field and the Higgs field, which leads to gauge-invariant masses for
the fermions.
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2. The Standard Model of Particle Physics

2.2. The top quark

The top quark was discovered in 1995 by DØ and CDF at the Tevatron [16, 17] at
Fermilab in the US. Its measured electric charge of 2

3 and spin 1
2 are consistent with the

SM prediction values [18]. The top quark is predicted to be an up-type quark, but so far
there are no direct measurements of I3.
The top quark is by far the heaviest elementary particle, with a mass of 172.08 ±
0.39 (stat.)±0.82 (syst.) GeV [19], even higher than the massive bosons. This is of special
interest, as it indicates a strong Yukawa-coupling in the order of unity, which has been
measured as Yt = 1.16+0.07

−0.08(stat.)+0.23
−0.34(syst.)[20]. This coupling is very sensitive to several

theories beyond the standard model, e.g. two Higgs doublet models [21]. Therefore it is
a very promising observable in the search for beyond standard model phenomena.
From the measured decay width of the top quark, a lifetime of 5 · 10−25 s [22] has been
calculated. This extremely short lifetime is less than the hadronisation Λhad ∼ 10−23 s and
the spin decorrelation (∼ 10−21 s) timescale. Therefore, the top quark will decay without
forming hadrons, offering a possibility for studies of bare quarks. Also,the decay products
of the top quark retain the spin information of the top quark. The CKM matrix shows
that the top quark will almost always decay into a bottom quark as Vtb ≈ 1 [23]. In these
decays, a W boson is emitted, like in every flavour changing process.

2.2.1. Top Quark Pair Production

Top Quarks can to this day only be produced at hadron colliders, as there are no electron-
positron colliders with a sufficient centre of mass energy of more than twice the top
mass (≈ 350 GeV) for tt̄ production. Therefore, top quarks have only been produced
at the Tevatron, where they were discovered, and the Lhc. The Feynman diagrams
for tt̄ production can be seen in Figure 2.2, with quark-antiquark annihilation being the
dominant production mode at Tevatron as it was a pp̄ collider, and gluon-gluon fusion
being dominant at the Lhc.
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2.2. The top quark
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Figure 2.2.: Top quark pair production via quark-antiquark annihilation (left) and
gluon-gluon fusion (right) in the s-channel. For gluon-gluon fusion, t- and
u-channel diagrams contribute to the tt̄ production as well.

2.2.2. Multi lepton processes

While top quarks can be produced in abundance at the Lhc nowadays, some processes
producing top quarks in association with other particles are rare. In Figure 2.3 the cross
sections of several processes measured at the Lhc are shown, which span five orders
of magnitude. Observing these rare processes requires complex analyses that combine
different decay channels and therefore different final states. These can then range from
all-hadronic events, to final states requiring up to 4 leptons. For the number of events
and the purity of the signal process in certain decay channels, depending on the number
of leptons, simple estimates are possible by looking at the branching ratio of the weak
bosons. Around 70 % of W/Z bosons decay into hadrons, with ℓ ν making up the rest for
the W , and ℓℓ decays for Z bosons contributing 10 % [23]. This means that with a higher
number of leptons, fewer events are available, as hadronic decays are more likely. At the
same time, only very few processes produce prompt leptons. Therefore the number of
background events drops as well, while the purity of the signal increases. This is used in
many analyses, e.g. by requiring at least one lepton, removing a lot of background that
is just producing jets.
For rarer processes, combinations of different channels are necessary to reach the required
significance to observe them. This increases the importance of final states with several
leptons, which are often ignored because they have low statistics and are difficult to
reconstruct. A simple example for this would be the decay of a W -boson, where a neutrino
is produced. While in a single lepton final state, the missing transverse energy can be used
to estimate the neutrino, this is no longer possible for multiple neutrinos, as only their
total sum of transverse energy would be the missing energy. This makes it significantly
more difficult to properly handle the neutrinos.
Another challenge in the reconstruction of these multi lepton final states are so called
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Figure 2.3.: Overview of measured cross sections of SM processes including top quarks
at the Lhc [24].

fake leptons, which mimic the signature of the prompt leptons from boson decays, but
are produced by other processes like b-hadron decays, or are not even leptons at all. The
properties and origins of prompt and non-prompt leptons are discussed extensively in
Chapter 4. As an example, in Figure 2.4, data and prediction in a combined tt̄H and
tt̄W analysis is shown. In both shown signal regions significant contributions from non-
prompt electrons and muons, as well as other fake contributions as material conversion
and charge misidentification can be seen. The contribution of the non-prompt leptons
make up almost one third of the events in some bins. This shows how high precision
prompt lepton tagging is key to perform such a multi lepton analysis succesfully.
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2.2. The top quark
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Figure 2.4.: Comparison between data and signal-plus-background prediction for the
distribution of jet multiplicity in (a) the 2ℓ same sign channel and (b) the
3ℓ channel after event selection and before further event categorisation [25].
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3. Experimental Setup

The experimental setup for this thesis is the Atlas detector [26] at the Large Hadron
Collider (Lhc) [27], based at Cern in Geneva, Switzerland.

3.1. The Large Hadron Collider

The Large Hadron Collider is a circular hadron accelerator and collider with two beam
pipes with four collision points. Most of the time, it operates as a proton-proton collider,
but is also used to collide lead ions.
The Lhc has several pre-accelerators, where the protons are accelerated step-by-step.
Since 2020, the first accelerator is Linac4, where the proton beams are produced via
acceleration of H−-Ions, which are stripped of their electrons on transition to the Proton
Synchrotron Booster (PSB) where they reach an energy of 2 GeV. The next accelerators in
line are the Proton Synchrotron (26 GeV) and the Super Proton Synchrotron (450 GeV).
After these pre-accelerators, the proton beams with 450 GeV are injected to the Lhc and
accelerated to up to 6.8 TeV per beam. An overview of the Lhc accelerator chain, the
other accelerators and the experiments can be seen in Figure 3.1.
The Lhc has two beam pipes with about 10,000 superconducting magnets along the beam
line with a magnetic field strength up to 7.7 T. The two beam pipes are necessary, as the
Lhc is a proton-proton collider, and two beams are needed for the collisions. Beam pipes
are kept at ultrahigh vacuum (less than 10 µPa) to minimise collisions with other particles,
which would reduce the beam energy. At maximum energy, the protons reach more than
99.999 % of the speed of light around the accelerator ring, which has a circumference of
27 km. The proton beams consist of bunches of 1011 protons, separated by 25 ns [27].
Collisions then happen in one of the four interaction points, where the detectors recording
the events are placed. These are Alice [28], where lead ions are used to investigate the
early universe, Cms [29], studying the SM and theories beyond it, Lhcb [30], focusing on
b quark physics, and Atlas, also focusing on the SM and theories beyond, which will be
explained in detail in the next section.
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3. Experimental Setup

Figure 3.1.: Schematic depiction of the different accelerators and detectors around the
Lhc. © Cern

3.2. The ATLAS Detector

The Atlas detector is the largest detector for particle physics at an accelerator. It is a
general purpose detector, meaning it is built without a particular focus but instead can
be used to investigate a broad range of processes. For this kind of detector, a coverage
of the entire solid angle of 4π is the goal, which Atlas achieves, except for the beam
pipes themselves. It has a cylindrical form with a diameter of 25 m and a length of
44 m. To describe the detector, cylindrical coordinates are used, with the z-Axis along
the beam line, the azimuthal angle φ and instead of the polar angle, the pseudorapidity
η = −ln

(
tan θ

2

)
. With the usage of the pseudorapidity, the masses of the particles are

neglected, due the high energy achieved in the collisions.
At Atlas, an instantaneous luminosity in the order of 1034 cm−2s−1 can be achieved
[26]. In Figure 3.2, a sketch of the Atlas detector [26] can be seen. As a general
purpose detector, it is able to record many different particle properties. For this purpose,
it has multiple layers, as seen in Figure 3.3. The Inner Detector (ID) is embedded in
a solenoid magnet with a field of 2 T. Around the magnet, the electromagnetic and

12



3.2. The ATLAS Detector

Figure 3.2.: Computer simulated image of the Atlas detector. © Cern

hadronic calorimeters are placed. The outermost layer is the muon spectrometer.

3.2.1. Inner Detector

The Inner Detector is the innermost layer of the detector, positioned as close to the beam
line as possible, with a distance of only 3.3 cm. It measures the position of a particle in
multiple layers, namely in the Pixel detector, the semi-conductor tracker and the tran-
sition radiation tracker [31]. In the Pixel detector, the position can be read out from
hits in the detecting pixels, which are up to 50 by 400 µm small. The next layer is the
semi-conductor tracker, which has silicon strips instead of pixels. Each strip measures 80
µm by 12 cm, spanning 61 m2 in total. The transition radiation tracker consists of drift
chambers (straws), each 4 mm in diameter and up to 144 cm long.
The ID is only able to record the tracks of charged particles, as it is based on electro-
magnetic interactions with the detector material and does not absorb particles. This can
also be seen in Figure 3.3, where the muon, electron and proton leave tracks, while the
electrically neutral particles do not. The magnetic field from the magnet around the ID
bends the path of charged particles, therefore it is possible to reconstruct the charge (from
the direction of the curvature) and momentum of the particles.
The tracking information is especially important to identify b-hadrons, because their rel-
atively long life time leads to their decay products originating from a secondary vertex
instead of the primary collision, making it possible to identify them, see chapter 3.3.
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Figure 3.3.: Behaviour of particles in the detector © Cern

3.2.2. Calorimeter System

The purpose of the calorimeter is the measurement of the particle energy. In the calorime-
ters most particles deposit their energy, as seen in Figure 3.3. The exceptions are muons,
as they are minimally ionising particles (MIPs), and neutrinos, which do not interact with
the detector at all.
Atlas uses an electromagnetic and a hadronic calorimeter [26]. The energy of the parti-
cles is measured by measuring the energy of the induced shower in the calorimeter. The
electromagnetic calorimeter uses liquid argon as the detector medium and is used for
the detection of electrons and photons. The hadronic calorimeter consists of absorbing
layers made from steel, and scintillating tiles as active material, and is used to measure
the energy of hadrons, e.g. protons and neutrons. Protons and other charged hadrons
leave a trace in the electromagnetic calorimeter and then produce showers in the hadronic
calorimeter (Figure 3.3). As quarks cannot exist in an unbound state, they undergo par-
ton showering and hadronisation forming a spray of particles which may be clustered to
jets. These are reconstructed from the calorimeter measurements [26].

14



3.3. Object Reconstruction

3.2.3. Muon Spectrometer

The muon spectrometer tracks the path of muons, similar to the ID. It measures the
deflection of muons in a magnetic field generated by superconducting air-core toroids,
with field integrals between 2.0 and 6.0 Tm. The muon spectrometer is composed of
a set of precision chambers comprising three layers of monitored drift tubes. In the
forward region, where background levels are highest, cathode-strip chambers complement
the setup. For the muon trigger system, in the barrel region resistive-plate chambers are
used, while the endcap regions use thin-gap chambers. With the combination of ID and
muon spectrometer, muons are easily identified [26].

3.3. Object Reconstruction

Object reconstruction is an important part of the analysis of the data recorded with a
detector. The measurements of the detector have to be attributed to particles. For this,
definitions of objects like electrons, muons or jets are needed. These definitions are based
on the expected behaviour of particles. With the object definitions, reconstruction of the
particles from the data is possible. Observables used for object definitions include pT,η
and tracks. Tracks are the trajectories of charged particles left in the ID and MS of the
detector. They are constructed from the ID using the ATLAS New Tracking (NEWT)
algorithm [32], using the SCT and pixel hits.

Electrons

Electrons leave a track in the ID, and produce a shower in the electromagnetic calorimeter.
Therefore, to reconstruct an electron, energy clusters in the electromagnetic calorimeters
which match with a reconstructed track are used [33]. The detector can detect electrons
with |η| < 2.47, except for the 1.37< |η| <1.52 region, since this is the transition between
barrel and end-caps. This is also sometimes used to separate between barrel (|η| < 1.37)
and end-cap (|η| > 1.52) electrons. They are required to have a transverse momentum
larger than 10 GeV. The impact parameters d0 and z0 are also used in the definition, with
d0 divided by its uncertainty σ(d0) is required to be less than 5. Also, |z0sin(θ)| < 0.5 mm
is required. Additionally, the normalised transverse energy in a cone around the lepton
candidate (ET TopoCone30/pT ) must be < 0.3. Additionally, a ’loose’ likelihood-based
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identification criterion is applied [33]. This is calculated via

LS(B)(x) =
n∏

i=1
PS(B),i(xi)

with P being the probability density function [33]. Other working points included are
’very loose’, ’medium’ and ’tight’.

Muons

Muons are reconstructed by combining ID tracks with tracks in the muon spectrometer
[34]. For muons, similar criteria to electrons are applied, with a few numerical changes,
and the identification criterion now required to pass ’medium’ quality. The muon has to
have |η| < 2.5 and d0/σ(d0) < 3, with |z0 sin(θ)| < 0.5 mm and ET TopoCone30/pT < 0.3
as for electrons.

Jets

As bare quarks cannot exist, they hadronize and produced multiple hadrons. These
hadrons appear in collimated streams, which are then called jets. For top quark analyses,
b quarks are of great importance. They can be identified using their considerable lifetime
(∼ 10−12 s) [23], in which they travel a significant distance, differentiating them from
other jets. They are required to have pT > 25 GeV and |η| < 2.5.
Jets are reconstructed with the anti-kt algorithm [35] with R =

√
ϕ2 + η2 = 0.4 as radius

parameter. The b-tagging is done via the "DL1r" algorithm [36], which uses the recon-
structed track and secondary as well as tertiary vertex information. The working point
(WP) is at 70%, therefore the jet has to have a b-tagging discriminant value larger than
for a 70 % efficient selection.
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4. Prompt and Non-Prompt Leptons

4.1. Definition

When W and Z bosons decay into leptons, these leptons are called prompt, as they
are coming from the primary vertex due to the short lifetime of these bosons. In con-
trast, "fake" leptons do not originate from these boson decays, and therefore need to be
distinguished from the prompt leptons needed for the boson reconstruction. One large
contribution to fake leptons are "non-prompt" leptons, which originate from secondary
decays, e. g. b- or c-hadrons, also known as heavy flavour (HF) fakes. Other fake lepton
sources are non-prompt leptons coming from light quarks (light flavour (LF) fakes), or
electrons produced from photon conversion.
As top quarks almost exclusively decay to a W boson and a b quark, fake leptons from
semileptonic b-hadron decays are an important background in any analysis using top
quarks. This is especially relevant in analyses with multiple leptons in the final state, as
discussed in Section 2.2.2.

4.2. Separation Variables

Prompt and non-prompt leptons can be distinguished based on multiple features, with the
two main categories of observables being isolation and lifetime information. For isolation,
a cone with a certain ∆R =

√
(|∆ϕ|2 + |∆η|2) is used, and the energy or momentum

inside the cone is summed up. Lifetime information is based on the position of the vertex
where the lepton is produced.
An example of the signature of leptons can be seen in Figure 4.1. The left lepton originates
from the primary vertex (short lifetime), and has no other tracks in the isolation cone
around it (isolated), therefore it will be identified as prompt. The right lepton originates
from a displaced secondary vertex (large lifetime), and has other tracks originating from
this vertex in the isolation cone. This lepton is non-prompt.
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Figure 4.1.: Differences between prompt and non-prompt leptons.

4.3. PLIV in Run II

PLIV is the upgrade of the Prompt Lepton Veto (PLV) used in Run I. The goal of its
development was an improvement of the performance for prompt lepton tagging by adding
new observables. By doing studies on the properties of non-prompt leptons passing the
PLV, new observables for lifetime and isolation were introduced.

Figure 4.2.: Construction and distribution of the new observable ΣEe
T,Cluster(∆R <

0.15)/pT.

An example for the a new isolation variable for electrons is ΣET,Cluster(∆R < 0.15)/pT.
In Figure 4.2 on the left a sketch of the calorimeter clusters in the η − ϕ plane is shown.
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4.3. PLIV in Run II

For the usual calorimeter-based isolation variables the core energy (yellow) is taken as
the lepton energy and excluded from the sum. For PLIV, the sum of the clusters in the
centre of a smaller cone (∆R < 0.15) is calculated, and divided by the pT of the electron.
This keeps the information on the lepton pT available. The difference in the distribution
for prompt and non-prompt electrons is shown in Figure 4.2 on the right.
For lifetime information, fast vertex fitting [37] is used to reconstruct the secondary vertex
of the B hadron decay. For further explanation, see Ref. [37]. One reconstructed vertex
for the prompt lepton is expected, as there is a primary vertex. An additional secondary
vertex is usually reconstructed for the non-prompt lepton. The llongitudinal

SV to PV /σ observable
refers to the longitudinal significance distance between the vertices.
An overview over all the included variables in PLIV for electrons can be seen in Section 6.1.
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5. Neural Networks

Neural Networks (NN) are a powerful tool in the analysis of high energy physics events.
With the increasing rarity of new processes, NNs are important to reach a high signal yield,
while suppressing the background. The simplest network is the perceptron, invented in
1957 and inspired by the neurons in the human brain [38]. It takes an input x = x1, ..., xn,
multiplies them with weights w = w1, ..., wn, sums them up, and applies a step function
to determine the output, as shown in Figure 5.1. This way, the perceptron can perform
a binary decision. One can now increase the complexity of the network by adding more
neurons or "nodes".

5.1. Deep Neural Networks

Neural Networks, which consist of interconnected layers of nodes. These nodes are organ-
ised into three main types of layers: the input layer, which receives the raw input data,
which is followed by hidden layers, which process the data through a series of transforma-
tions and the output layer in the end, which generates the final prediction or classification.
If there are at least two hidden layers, the network is called "deep". If used for binary
classification tasks in particle physics, one class is normally assigned a value of 0 (e.g.
background), the other is assigned 1 (signal). One can then apply a threshold of 0.5, for
example, to predict an event as one class or the other.
The single nodes in the network work similar to the perceptron explained above. Every
node takes the outputs from the previous layer, applies weights and computes its own
output. If every node in every layer receives the inputs of all nodes in the layer before,
it is called fully connected. Additionally, a bias term can be added. The bias an offset
that is added to the output of a layer. Onto the computed value of the node an activa-
tion function is applied. Activation functions introduce non-linearity into DNNs, allowing
them to model complex, non-linear relationships in data. Without them, the network
would behave like a linear model, regardless of the number of layers, severely limiting its

21



5. Neural Networks

Figure 5.1.: Single perceptron which sums over the weighted inputs and applies a step
function. The output is 1 if the threshold is passed, otherwise the output
is 0.

capabilities. One important function is the Rectified Linear Unit function

ReLU(z) = max(0, z),

which keeps the outputs from becoming negative. Other relevant activation functions are
the Exponential Linear Unit (ELU)

ELU(x) =
 x, if x > 0

α(ex − 1), else,

which can range from -1 to positive infinity, and the tangens hyperbolicus

tanh(x) = sinh x

cosh x
= ex − e−x

ex + e−x
,

which can only take values between -1 and 1. Additionally, one can use the sigmoid
function, which is especially used for the output layer

σsig(z) = 1
1 + e−z

,

in binary classification. This makes sure that the output of the network always stays
between 0 and 1, which is desired for classification tasks.
For the training of the network, a metric is needed to evaluate the prediction based on
the true label. This metric is called the loss function, J(θ⃗). For the binary classification
task that will be performed, the binary cross-entropy loss will be used, which is defined
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5.1. Deep Neural Networks

as
J(θ⃗)BCE = 1

m

m∑
i=0

[yi log (ŷi) + (1 − yi) log (1 − ŷi)] ,

with for every instance i, the true label being yi, while the DNN prediction is ŷi, the size
of the training sample is given by m and the parameters of the DNN are summarised as
θ⃗.
An additional feature that can be used in the training of NNs is Dropout for certain lay-
ers, which are then called dropout layers. This can be used to limit the impact of certain
nodes and connections. In each training step, there is a probability that certain nodes
will drop, i.e. not getting any inputs and therefore not producing any output. This can
also happen for multiple steps back to back, as the dropout probability is independent of
previous dropouts. This forces the network to use all nodes to keep the loss low even if
important nodes drop out. This is only applied in the training, as in the evaluation and
application, the network should be able to use its entire architecture.
For validation of the training, 2-fold cross validation is used. All events are split into two
statistically independent subsets (folds) of equal size. Afterwards, one fold is used for the
training. The remaining one is used for testing. From the training fold, 25% of the events
are set aside as a validation subset. Both, the validation subset and the testing fold, are
not used for the training of the DNN. The DNN is trained on the 75% of events remaining
in training fold, with validation after each epoch on the validation set. After training,
the other fold can be used as an independent measure of the performance of the Network,
making sure the evaluation happens on events the network has not yet seen. Every fold
is used as testing fold exactly once, so in the end, there are two models trained, and the
final result is a combination of each of the predictions.
Another important part of training a DNN is the prevention of overtraining. This occurs
if the DNN has learned the important features for the general predictions, but starts to
pick up specific properties such as statistical fluctuations in the training dataset. This
reduces the performance of the network on data other than the training data. Therefore,
an early stopping mechanism is included, which stops the training before the specified
maximum number of epochs, if there is no further improvement. This is done by setting
a minimum improvement for the loss in the validation.
The Neural Networks used in this thesis are built using pytorch [39], and the opti-
miser used to update the connection weights is the Nadam optimiser [40] which is the
Adam optimiser [41] but with incorporated Nesterov momentum [42] using the principle
of stochastic gradient decent (SGD). This optimiser is used to minimise the loss.
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Track Jet

Track 1 Track 2

Track 3 Track 4

Edge 1 Edg
e 2

Edg
e 3 Edge 4

Figure 5.2.: Example of a Graph for an event with 4 tracks.

5.2. Graph Neural Networks

While DNNs operate well on constant structures such as grid like representations of data,
for example in image classification, they struggle with more complex forms of data repre-
sentation, e.g. graphs. Graph structures are used to model relationships between objects.
A graph consists of two main components: nodes (also called vertices), which represent
certain objects, and edges, which represent the connections or relationships between these
objects. Graphs are highly versatile and can be used to model a wide range of systems
across different domains. The power of graphs lies in their ability to represent and analyse
complex systems by focusing on both the objects involved and the connections between
them. An example for a graph can be seen in in Figure 5.2, which shows the graph for
an event with one reconstructed track jet, and 4 reconstructed tracks. To each node
and edge, multiple observables can be assigned. Ideally, they correspond to the object
represented, as seen in Figure 5.3, which only shows two jets to keep it simple and clear.
Graph Neural Networks [43], or "GNNs" are NNs that can handle graphs. They are able
to use the graphs to understand the structure of the event, and habe the advantage of
being able to handle inputs of variable length. This is especially useful while working
with tracks, as the number of tracks is variable. A maximun number of tracks is set by
defining this number of nodes, but if there are less tracks in the event, unnecessary nodes
are pruned, i. e. removed from the input. That way the GNN can handle events with
only two tracks, or as many as wanted, but reducing the complexity of the graph to the
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pT
η
φ
E

NPIX

NSCT

d0/σ
z0 sin θ

NPIX

NSCT

d0/σ
z0 sin θ

∆R(TJ, T1)
pT1

T /pTJ
T

∆R(TJ, T2)
pT2

T /pTJ
T

Figure 5.3.: Example of a filled Graph for an event with 2 tracks. An explanation of
the observables is given in Table 6.1, with Track Jet being abbreviated as
TJ, and Track 1/2 as T1/2. The Track Jet Variables are the four-vector of
the Track Jet.

necessary level and without wasting computing power on padded values of non-existing
tracks, as a DNN would have to.
There are different layouts of layers used in this analysis. The first one is Graphsage
[44], which calculates the output

x′
i = W1xi + W2 meanj∈N (i)xj,

by combining the input, and the mean of the nodes around xj, after multiplying a weight
W with it. This is a relatively simple approach for a GNN layer. A more complex layer
would be the Graph Convolutional Network (GCN) [45], given by

x′
i = ΘT

∑
j∈N (i)∪i

ej,i√
d̂j d̂i

xj,

with d̂i = 1 + ∑
j∈N (i) ej,i where ej,i denotes the edge weight from source node j to target

node i, for further explanation see Ref. [45]. Another layer used is the graph attentional
operator (GAT), described by

x′
i =

∑
j∈N (i)∪i

αi,jΘtxj,

as explained in detail in Ref. [46]. The last graph layer used is GraphConv [47], calculating
the new values as

x′
i = W1xi + W2

∑
j∈N (i)

ej,ixj,
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5. Neural Networks

with edge weights ej,i that connect the source node j with the target i.
For the final network, a hyperparameter optimisation is performed. This means that a
number of different configurations of layers and network sizes are trained, and evaluated
to choose the best possible architecture.
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6. Prompt Lepton Tagging with
Deep and Graph Neural Networks

PLIV was the primary tool for prompt lepton tagging in Run II of the Lhc, relying on
several dedicated observables related to lifetime and isolation of leptons. Since PLIV has
been developed for Run II, an update for Run III has to be developed. For this update, a
lot of potential approaches could be considered, starting from just using the established
version and retrain it on new data, up to completely different architectures and types of
neural networks. In this thesis, the approach of a DNN, and a GNN combined with a
DNN, as such approaches are presented. The goal is an analysis of the potential of the
presented approaches.
For the GNN approach, the GNN is used to analyse the tracks of the events, using the
flexibility needed to incorporate the variable number of tracks in any given event. The
DNN is trained on the other observables, which are mainly based around the lepton.

6.1. Sensitive Observables

The identification of scalar observables most sensitive to the electron origin is the starting
point of any approach of lepton tagging. For this thesis, the observables used for the PLIV
of Run II, as presented in Table 6.1 are reconsidered and analysed again. Depending on
the type of the observable, they were used for either the GNN only or both NNs. The
scalar observables are processed by DNNs in both cases, and therefore also called the
global variables, while the vector-like observables are processed by the graph part of the
GNN.

6.1.1. Global observables

The distributions of the observables that were most important in the training are shown
in Figure 6.1, with the other observables being shown in Appendix A. For the most
important observables the two dimensional separation is shown, to present the differences
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6. Prompt Lepton Tagging with Deep and Graph Neural Networks

Table 6.1.: Input variables for PLIV in Run II. jetlepton
track refers to the closest track jet to

the training lepton.
Input Description Type

∆R(track, track jet) The ∆R between ID track and jetlepton
track Vector

ptrack
T /ptrackjet

T pT of ID track divided by pT of jetlepton
track Vector

z0 sin(θ) longitudinal impact parameter scaled by sin(θ) Vector
d0/σd0 transverse impact parameter divided by significance Vector
NPIX

hit number of hits of the track in the pixel detector Vector
NSCT

hit number of hits of the track in the SCT Vector
max(llongitudinal

SV to PV /pT) Max. SV longitudinal significance of the lepton Scalar
pTVarCone30/pT Lep. isolation using ID tracks in cone ∆R < 0.3 Scalar

ET TopoCone40/pT Lep. isolation using topo. clusters in cone ∆R < 0.4 Scalar
Σ∆R<0.15

cluster ET /pT sum of cluster energy divided by lepton pT Scalar
Ntrack in track jet Number of tracks clustered by the track jet Scalar

prel
T pT along the track jet axis: p·sin(<lepton, track jet>) Scalar

plepton track
T /ptrack jet

T lepton track pT divided by track jet pT Scalar
∆R(lepton, track jet) ∆R between the lepton and the track jet axis Scalar

plepton
T bin number Index of the bin of lepton pT X

Track Jet (pT, η, ϕ, E) Four vector of the track Jet Vector

in the distribution more clearly. For ET TopoCone40/pT the distribution shows that charge
flip and photon conversion electrons prefer values close to 0, and do not take values larger
than 0.15. Meanwhile prompt and the light and heavy flavour decay electrons have a clear
peak at 0, but have a broad distribution, especially seen in the relatively large last bin
consisting of the overflow with values larger than 1. The separation plot supports this,
showing a clear peak at 0 for the prompt and charge flip, and a more broad distribution
for the light and heavy flavour decays. For the ∆R(lepton,track jet) it is similar, but for
values larger than 0.2 almost only prompt leptons remain. But also here the separation
shows a clear peak for prompt, photon conversion and charge flip electrons at 0, with the
LF and HF decay electrons showing a more broad spectrum with a significantly lower
peak at 0.
For the number of tracks in the track jets, most prompt leptons have no tracks in the
track jet, because a track jet can only be constructed with at least 2 tracks. For prompt
leptons, one track is expected, with multiple tracks being a possibility, for example if the
track is distorted in any way. In the separation a clear preference for the LF and HF
decays for more tracks can also be observed, while the other processes once again prefer
the lower values. The impact parameters for prompt leptons are also expected to be
small, as they are coming from the primary vertex, with the division of the significance,
the shape is expected. This is also observable in the separation, with HF decay and charge
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flip electrons having a very broad distribution, which only shows a slight peak at 0 for
the heavy flavour decays, while charge flip electrons are the only process which has a low
point of the distribution at 0.
These observables already show significant differences in the processes, which can then be
combined and exploited by the NNs.
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Figure 6.1.: Distributions and separation of the most important global observables.
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6.1. Sensitive Observables

6.1.2. Track Observables

For the GNN the several vector-like observables can be used, with most of them directly
representing the additional track information. The other observable that is added is the
maximum secondary vertex longitudinal significance of the electron, which describes the
distance between the primary and a possible secondary vertex. The distribution of this
observable is shown in Figure 6.2. It can be seen that the shape is asymmetric for all
processes, with positive values being strongly preferred, and the peak of the distribution
is at zero for most processes, even though there is one exception: For the heavy flavour
fakes, the distribution is noticeably broader, and the peak is shifted from zero. This shows
the expected behaviour of heavy flavour fakes, with them having a secondary vertex that
is significantly displaced from the primary vertex, as the heavy quarks have a considerable
lifetime. Therefore this observable will be very important to tagging prompt leptons in
contrast to leptons originating from b- or c-jets.
One important decision to be made is the number of tracks to include into the GNN. In
Figure 6.3 the length of the vectors of the pixel hit observable is shown. From this and
the distributions for the other similar observables it was decided to move forward with
including up to 6 tracks. This includes most of the events (≈ 95%), while keeping the
number of unnecessary nodes low. From the ratio it can be seen that there is a slight
tendency for non-prompt processes to prefer a lower number of tracks. This would not
be expected from LF- or HF-fakes, but for the charge flip and photon conversion fakes.
The reason for this to not be compensated by the LF- and HF-fakes lies in the selection
in Table 6.2, as most other tracks do not meet the requirements made.
Coming back to the track observables themselves, the normalised distributions of the
number of pixel and SCT hits are shown in Figure 6.4, for each of the five processes. For
tracks to be considered for the lepton tagging, they have to fulfil the selection criteria
listed in Table 6.2. Looking at the distributions themselves, there are only slight fluc-
tuations between the different sources. The ratios also stay very close to one, with the
exception of some bins with very low bin content.
The shape of the distributions seem to be because of the applied selection, which requires
a total of at least seven hits in the silicon detectors, all tracks with less than that are
not considered. The peak of the Pixel hit distributions is at seven, with the peak of the
SCT hit distributions at zero. All tracks with less than seven pixel hits have to have at
least the difference as SCT hits. A track with six pixel hits, has at least one SCT hit, but
could also have two. This explains the slight difference between the exact shapes of the
distributions. For tracks with five pixel hits, two SCT hits are required. The absence of
tracks with less than five hits is explained by the fact that there are no tracks with more
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Table 6.2.: Requirements for the tracks to be considered for the lepton tagging
pT[MeV] |η| |z0 sin θ| [mm] ∆R(lepton, track) NSi N shared

Si Nholes
Si Nholes

pix

> 500 < 2.5 < 1 < 0.4 and > 10−6 ≥ 7 ≤ 1 ≤ 2 ≤ 1

Figure 6.2.: Separation of the maximum secondary vertex longitudinal significance.

than two SCT hits.
For the impact parameters shown in Figure 6.5, the separation is also low. Both observ-
ables have a clear peak around zero for all processes. The ratios stay close to one near
zero, with fluctuations only happening at the tails of the distributions, where small sta-
tistical fluctuations can impact the ratio. These should not be used to create a separation
between the processes.
The last two observables are composed of track jet and track information, with the ∆R
showing the angular distance, and the prel

T the relative transverse momentum of the track
and track jet. Their distributions vary strongly for the different electron origins, as seen
in Figure 6.6. For the ∆R distributions the prompt electrons have the highest peak, while
light flavour and charge flip fakes show a less clear peak, and in the tails of their distri-
bution there are larger. The heavy flavour and photon conversion fakes stay closer to the
shape of the prompt distribution, but also show a slightly lower peak and a broader tail.
Outside of the peak between two and four, the non-prompt electron density for every pro-
cess is higher than the prompt one. For the relative pT a similar effect can be observed.
While in the first bin, the prompt leptons have the highest content, they drop to third
most in the second bin, and from the third bin they have the lowest density. These two
observables seem to offer the most separation power of the track observables.
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Figure 6.3.: Normalised distribution of the number of tracks with hits in the pixel
detector per event for prompt and non-prompt electrons. The lower plot
shows the ratio between non-prompt and prompt electrons per bin. The
vertical line shows the limit of the six included tracks.
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Figure 6.4.: Distributions of the number of pixel and SCT hits of the first 6 tracks.
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Figure 6.5.: Distributions of the impact parameters of the first 6 tracks.
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6.2. Model Descriptions

For the training of the models the architecture and datasets have to be defined. For the
DNN, the most important architecture part is the number of layers and nodes, as for all
NNs. For the GNN, other important features come into play, as the layers can be very
different in computational approach, and even which attributes are allowed for the nodes.
Some graph layers allow for edge connections, some do not, and both are used in the
model. Therefore the chosen architecture is important, especially for the GNN.

6.2.1. DNN

The base approach for this thesis is a DNN, as they work quite stable and reliable if their
training dataset is large enough. Therefore, it makes sense to use them as a baseline for
other possible approaches. Therefore, a DNN with just 2 layers with 30 nodes each is
trained, the parameters can be seen in Table 6.3. Additionally, models with 2 layers of
50, 3 layers of 30, and 3 layers of 100, 6 layers of 30 and 2 layers of 20 nodes were trained.
The observables used in the training can be seen in Table 6.4. Additionally, some similar
variables such as ET TopoCone20 and ET TopoCone40 as well as Σ∆R<0.15

cluster ET were pro-
vided, which are the base versions of some PLIV observables, to see whether they offer
additional separation power without the normalisation to the pTof the electron.
For the initial training a MC set of ≈ 135, 000 electrons is used. Of those electrons,
92.88 % are classified as prompt. The second largest contribution are heay flavour decays
with 4.33 %, and then light flavour deacys with 1.33%. The rest is made up of photon
conversion and charge flip fakes. The underlying samples are tt̄ non-all hadronic sam-
ples, and therefore all contain at least one lepton. The events were generated using the
PowHegBox-2 [48] at NLO with the NNPDF3.0NLO PDF set [49] and the damping
factor hdamp set to 1.5 times the top mass. The events are interfaced to Pythia 8.308
[50] using the A14 [51] tune and a NNPDF2.3LO [49] PDF set.
The reason for some inputs missing in the DNN is mainly that these observables were
either not available in the derivation at that time, such as the secondary vertex informa-
tion necessary for max(llongitudinal

SV to PV /pT), which only became available during the later part
of this analysis, or that they are not easily includable in the DNN, such as the number of
hits in the pixel and semiconductor tracker, as they are of variable length, which is not
possible for a DNN input ad hoc.
An approach including the track observables is presented additionally to the DNN, where
the 6 variables per track were just added into the DNN, applying "padding". Padding
means filling up empty variables with a default value, in this case -99. This makes it pos-
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Table 6.3.: Overview of the main DNN features.
Feature Value
Nodes 30,30
Loss Binary_Crossentropy

Optimiser Nadam
Epochs 10000

Learning rate 10−3

Dropout 30%

Table 6.4.: Input variables reused for the Neural Networks. jetlepton
track refers to the closest

track jet to the training lepton. The GNN edges are drawn between the
track jet node and the track nodes.

Input Included in
∆R(track, track jet) GNN-Edge

ptrack
T /ptrackjet

T GNN-Edge
z0 sin(θ) GNN-Node
d0/σd0 GNN-Node
NPIX

hit GNN-Node
NSCT

hit GNN-Node
max(llongitudinal

SV to PV /pT) GNN-Global
pTVarCone30/pT DNN & GNN-Global

ET TopoCone40/pT DNN & GNN-Global
Σ∆R<0.15

cluster ET /pT DNN & GNN-Global
Ntrack in track jet DNN & GNN-Global

prel
T DNN & GNN-Globa

plepton track
T /ptrack jet

T DNN & GNN-Global
∆R(lepton, track jet) DNN & GNN-Global
Track Jet (pT, η, ϕ, E) GNN-Node

sible for the DNN to process inputs that are smaller than expected, as the cost of adding
inputs that do not have any information. Therefore the addition of the track observables
could be beneficial or disadvantageous.
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6.2.2. GNN

As the baseline DNN approach is limited by the inherent features and limitations of DNNs,
a second approach in the form of a GNN is presented. The GNN offers the flexibility of
variable length for the variables. This opens up a more promising way to include the track
observables. There is still a hard limit on the maximum number of tracks included, with
a cutoff defined at a maximum of 6 tracks, as explained earlier. If there are less tracks in
the event, pruning is applied. This is done to keep the computations as simple as possible
by pruning away all nodes that are not filled. This could be either due to them not
existing at all, or just incomplete reconstruction. The presented approach also combines
the already shown DNN approach with the GNN, as the final model is a combination of
both DNN and GNN features.
For the GNN, the full list of observables listed in Table 6.4 is included, with the track
variables either being assigned to the nodes (Impact Parameters, ID hits) or to the edges
between the track jet as the central node (∆R, relative pT). All other variables are as-
signed as global variables, being processed by a DNN.
The training set has been increased for the GNN, with a total of 523,602 electrons. The
largest fraction by far is the prompt electrons, making up ≈ 90%, with the second largest
fraction heavy flavour decays only making up ≈ 7.5%. Light flavour decays only make up
≈ 1.4%, while photon conversion and charge flip contribute less than one percent each.
The underlying events are still non-all hadronic tt̄ decays, generated as described before.
The architecture of the GNN was determined via hyperparameter optimisation with 250
different models. The chosen model is shown in Table 6.5, with the relevant functions
having been explained in Section 5.2. The Graph part consists of six graph layers, with
four different kinds of layers being used, and a different number of Graph channels for
each. Different activation functions are used after each Graph layer.
The DNN that is handling the global inputs has two layers with 95 and 70 nodes, respec-
tively. The layers have different activation functions in ReLU and sigmoid. The outputs
of the Graph Network and the Global Deep Network are combined by two final layers
with 20 and 30 nodes, activated by ELU and ReLU. The final output activation is then
once again the sigmoid function, making sure the output is between 0 and 1.
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Table 6.5.: Architecture of the GNN
Feature Value

Graph Layers GCN, SAGE, GAT, Graph, GCN, GCN
Channels 20,90,60,25,55,60

Global Nodes 95,70
Final Nodes 20,30

Activation Graph ReLU, tanh, ReLU,tanh, ELU, ReLU
Activation Global ReLU, sigmoid
Activation Final ELU,ReLU

Activation Output sigmoid
Loss Binary Cross-entropy

Optimiser Nadam
Epochs 10000

Learning rate 0.009
Dropout 20 %
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6.3. Training

6.3. Training

The training and the validation of the models are important steps for every analysis using
neural networks. The networks have to be checked for over- and underfitting, and the
relevance of the observables has to be discussed as well.

6.3.1. DNN

The DNN was trained in two folds, which show no significant differences between them,
as seen in the loss curves in Figure 6.7. Both converge relatively fast, and do not show
signs of over- or underfitting. Therefore it can be assumed that the model is working as
intended.
To asses the relevance of the observables, the importance and the correlation between the
observables are considered. The permutation importance in Figure 6.8 shows that the
most important observable is the number of tracks per track jet. This is probably based
on the expectation that prompt leptons will leave less tracks than non-prompt leptons
inside jets, that also produce tracks. The next most important observable is the impact
parameter, which measures the distance of the object from the primary vertex, which is
expected to be large for b-quarks, the main source of heavy flavour fakes. The third most
important is the ET TopoCone30/pT variable, which is an isolation variable divided by the
lepton pT. Almost equally important was the ∆R between lepton and track jet, so the
angular distance between lepton and jet, another isolation variable.
On the left of Figure 6.8 the correlation between the variables is shown. This matrix is
reduced to the observables with considerable correlations, as non correlated variables do
not need close monitoring. From the matrix, it can be seen that the pTVarCone30/pT

and pTVarCone20 have a correlation of 1, meaning that one of them can be removed,
as they do not hold additional information. Other highly correlated observables are
ET TopoCone30/pT and ET TopoCone30. Both of these pairs are expected to have high
correlation, as one of them is just the other divided by pT. Observables that have non-
obvious correlation are the ∆R between lepton and track jet, with the number of tracks
in the track jet and the electron track pT divided by the track jet pT.
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Figure 6.7.: Loss for the two folds of the training, with Fold 0 on the left, and Fold 1
on the right.

Figure 6.8.: On the left, the correlation matrix of the observables with considerable
correlations, leaving out observables with low correlation. On the right,
the relative importance of the input variables.
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6.3.2. GNN

To asses the validity of the GNN models, the loss curves of the models are shown in
Figure 6.9. The loss for both folds shows that the models converge, and a plateau in the
loss of the validation is reached. The loss of the training set is still decreasing, but since
the validation loss stays stable, there is no overfitting. Overall, the loss is behaving as
desired, and no signs of unwanted behaviour can be seen. It can therefore be concluded
that the model is valid and can reasonably be used for lepton tagging.
For the validation of the sensitive observables, the permutation importance of the inputs
is considered again, which can be seen in Figure 6.10. The pT VarCone30/ pT observable
has the highest importance with the prel

T being second most important. For the track
observables the impact parameter d0/σ of several tracks is most important. The energy
and pT of the track jet also show their importance. From the permutation importance it
can be seen that no observable is completely dominating the decision making, and that
the global network and the graph network observables contribute to the output score
significantly.
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Figure 6.9.: Loss for the two folds of the training, with Fold 0 on the left, and Fold 1
on the right.

Figure 6.10.: Permutation importance of the inputs. The pT VarCone30/pT observable
has the highest importance. The second most import was the relative pT
of the electron.
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6.4. Performance Comparison

The base model trained for this study was the DNN with 2 layers of 30 nodes each. The
distribution of the DNN output score is shown in Figure 6.11. It already shows that the
network is generally able to separate the prompt and non-prompt leptons, as seen in the
clear peaks of the non-prompt leptons at a low score and the prompt leptons with a high
score. Notably, in the interval between a score of 0.6 and 0.9, there are basically no fake
electrons, but they reappear at scores slightly higher than 0.9, together with the prompt
lepton peak.
To asses where the DNN is working well, the separation is considered. The separation
in one dimension, so just differentiating between prompt and non-prompt leptons, can
be seen on the left side of Figure 6.12, while the right side shows the two dimensional
separation between the different kinds of fake leptons. The one-dimensional separation
shows that the fraction of prompt events is low for low scores, and becomes the larger
fraction at a score of 0.55, with a clear peak at 0.9, with the non-prompt leptons showing
the opposite behaviour, similar to Figure 6.11. The total separation is 61.04%. For the
two dimensional separation clear peaks are visible for the prompt leptons at around 0.9,
while the LF- and HF-fakes peak near zero. For the photon conversion and charge flip
fakes the distribution is not as clear, but relatively broad and almost uniform. This
shows the DNN works best for the prompt leptons and LF/HF fakes, as it is tagging
them correctly, but worse for photon conversion and charge flip fakes who are not clearly
identified as fakes.
The confusion matrix in Figure 6.13 shows the percentage of prompt and non-prompt
leptons being assigned correctly. Notably signal events are correctly classified as signal
about 90 % of the time, while non-prompt leptons are only classified as such in 84 %
of cases. This shows there is especially room for improvement for the correct tagging of
non-prompt leptons.
To compare the different sized DNNs, their ROC curves are compared in Figure 6.14. It
can be seen that there are only very small differences between all of the models. Therefore
it has to be concluded that increasing the size of the DNN is not able to yield better results,
even a slightly smaller model reaches the same result. This could mean that the available
observables do not offer more information than already used.
To evaluate the inclusion of the track observables in the DNN, the ROC Curves of the
DNN without, and with 3, 6 or 9 tracks are shown in Figure 6.15. It can be seen that the
network performs worse with added variables, which is obviously unwanted behaviour,
as the network should at least be performing similar, if the added information offers
no additional separation power. Instead, the added information affects the prediction
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DNN

Figure 6.11.: Distribution of the DNN output score.

DNN DNN

Figure 6.12.: Separation of the prompt and non-promt leptons in 1D and 2D.

power negatively. This could be either due to the padding leading to unwanted results,
as the network gets confused by the unfilled tracks, or due to the massive increase in
size and complexity in the network, as 18, 36 or 54 input variables are added. Due to
this behaviour, the track variable inclusion is presented separately from the initial DNN
results. It can only be concluded that the DNN is not suitable for the inclusion of the
track observables.
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Figure 6.13.: The confusion matrix of the DNN, showing how the DNN classifies certain
events, with signal referring to prompt, and background to non-prompt
electrons.
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Figure 6.14.: ROC curve for the different DNN models.
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Figure 6.15.: ROC Curve for the DNN with added Track Variables for 3, 6 and 9 Tracks.
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Figure 6.16.: Distribution of the GNN Score.

For the evaluation of the GNN, the first thing to look at is the output of the GNN, which
is shown in Figure 6.16. From there, several things can already be seen. The distributions
of charge flip and photon conversion electrons are pretty uniform, meaning the GNN is
not good at classifying these electrons. For the light and heavy flavour fakes and the
prompt leptons the distributions show clear preferences for the desired values. The fake
distribution here has a clear peak at zero, and gets smaller towards one. On the other
hand, the score of the prompt leptons has a peak at one, and at 0 there are almost no
prompt electrons. This is supported by looking at the two-dimensional separation seen
in Figure 6.17, which makes the distributions even more clear. This shows the GNN is
good at separating prompt electrons from light and heavy flavour fakes. The peaks at the
desired values of those three processes are very clear in this representation. For photon
conversion and charge flip fakes the distributions do not have one clear peak each, but
instead pretty uniform distributions. For photon conversion, there seem to be two slight
peaks at both ends of the spectrum.
The confusion matrix in Figure 6.18 shows an accuracy close to 90 % for assigning the
correct label to a given electron. For the prompt electrons, there is only a slight improve-
ment in contrast to the DNN, but for non-prompt electrons the correct tagging percentage
rises to close to 90 % as well. This already shows that the GNN is performing better than
the DNN.
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Figure 6.17.: 2D separation of the output score.

Figure 6.18.: Confusion matrix for the GNN, with signal corresponding to prompt, and
background refering to non-prompt electrons.
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Figure 6.19.: ROC curve comparison between the DNN and the GNN.
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Figure 6.20.: ROC curve comparing the GNN and PLIV. This is only evaluated on
prompt leptons and heavy flavour fakes to create an even comparison
with PLIV.

To complete the comparison of the DNN and the GNN, their ROC curves can be seen
in Figure 6.19. It can be seen that the GNN is outperforming the DNN in background
rejection for any prompt efficiency. At a prompt efficiency of 70 %, the GNNs rejection is
higher by a factor of 2.5 to 3. As the global observables are available to both approaches,
and both process them via a DNN, the difference has to lie in the track observables.
Finally, since the base of the entire study is PLIV, it should be compared to it. This
is done in Figure 6.20, comparing the GNN to PLIV. To make a fair comparison, the
evaluation here is done on only prompt and heavy flavour fake electrons, as this was the
basis for the evaluation on PLIV. It can be seen that the GNN is able to get close to the
rejection the end-cap version of PLIV could reach. The barrel version of PLIV is still
performing better by a factor of 4 at 70% prompt efficiency.
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7. Conclusion and Outlook

The approaches to prompt lepton tagging presented in this thesis show that alternate
methods of lepton tagging can work as well. The DNN approach shows that a lot can
already be gained from the global observables alone, but also shows how the DNN struggles
with the variable number of tracks. The comparison between DNN and GNN proves that
it is important to include the available track information, and that neural networks that
can work with variable input lengths have an advantage over less flexible architectures.
The addition of the track observables and secondary vertex information for the GNN
has increased the performance significantly. If evaluated on the same basis as PLIV, the
performance already is in the right order of magnitude. On the other hand this approach
is still significantly worse than the PLIV, despite the inclusion of the same observables.
As for reasons the GNN is not able to reach the same accuracy as PLIV, the first thing to
be mentioned should be that the training sample for the GNN was significantly smaller
than the samples that PLIV was trained on. An important thing to note is that both
networks presented were trained only on tt̄ samples. The inclusion of other samples, such
as Z+jets, should definitely be investigated. Additional processes might give additional
insights to which observables are important to lepton tagging. Additionally, another
possible reason for the difference could be the non-existing separation of barrel and end-
cap electrons. For PLIV, two completely separate models are used for the tagging of
those, while the presented approaches both do not make this differentiation. It would
make sense to investigate whether there are significant differences between barrel and
end-cap electrons, to see if it makes sense to keep this split.
With new approaches to lepton tagging in Run III already on the way, an approach similar
to the one presented is already being used. The tagging networks GN1 and GN2 [52] are
GNNs trained to be used for tagging of several objects, especially jets (b- and c-tagging).
Currently GN1 is used for jet flavour tagging, beating the standard b tagging algorithms
such as DL1r [53] by a factor of at least 2 in the rejection of light- and c-jets, it is discussed
to use this tool for prompt lepton tagging. If these networks shows similar performance in
lepton tagging as in jet tagging, they will certainly be considered as a valid and powerful
tool for lepton tagging.
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Figure A.1.: Distributions of the other observables used in training.
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